Question

In: Statistics and Probability

Colleen knows the population mean she is working with is 90 and the standard deviation of...

Colleen knows the population mean she is working with is 90 and the standard deviation of this population is 4. She predicts she will obtain a sample mean of 91 with a sample size of 16. She sets her alpha level to 0.01 and her research hypothesis is two-tailed. What is the power of her study? ans = 5.73%

Solutions

Expert Solution


Related Solutions

A population has a mean of 400 and a standard deviation of 90. Suppose a sample...
A population has a mean of 400 and a standard deviation of 90. Suppose a sample of size 125 is selected and x bar is used to estimate mu. a. What is the probability that the sample mean will be within +/- 5 of the population mean (to 4 decimals)? (Round z value in intermediate calculations to 2 decimal places.) b.What is the probability that the sample mean will be within +/- 10 of the population mean (to 4 decimals)?...
A population has a mean of 300 and a standard deviation of 90. Suppose a sample...
A population has a mean of 300 and a standard deviation of 90. Suppose a sample of size 125 is selected and is used to estimate . Use z-table. What is the probability that the sample mean will be within +/- 3 of the population mean (to 4 decimals)? (Round z value in intermediate calculations to 2 decimal places.) 0.8884 What is the probability that the sample mean will be within +/- 11 of the population mean (to 4 decimals)?...
A population has a mean of 300 and a standard deviation of 90. Suppose a sample...
A population has a mean of 300 and a standard deviation of 90. Suppose a sample of size 125 is selected and  is used to estimate . Use z-table. What is the probability that the sample mean will be within +/- 7 of the population mean (to 4 decimals)? (Round z value in intermediate calculations to 2 decimal places.) What is the probability that the sample mean will be within +/- 13 of the population mean (to 4 decimals)? (Round z...
Item Sample Mean 1 Population standard deviation of 1 n1 Sample Mean 2 Population Standard Deviation...
Item Sample Mean 1 Population standard deviation of 1 n1 Sample Mean 2 Population Standard Deviation 2 n2 7 18 6 169 12 12 121 0.01 Perform a Two-tailed hypothesis test for two population means.
Suppose the mean and the standard deviation of a distribution are as follows: population mean and...
Suppose the mean and the standard deviation of a distribution are as follows: population mean and standards deviation are 60 and 5, respectively. At least what proportion of the observations lie between 45 and 75?
The mean of a population is 75 and the standard deviation is 13. The shape of...
The mean of a population is 75 and the standard deviation is 13. The shape of the population is unknown. Determine the probability of each of the following occurring from this population. a. A random sample of size 32 yielding a sample mean of 76 or more b. A random sample of size 160 yielding a sample mean of between 74 and 76 c. A random sample of size 218 yielding a sample mean of less than 75.2 (Round all...
a. A population is normally distributed with a mean of 16.4 and a standard deviation of...
a. A population is normally distributed with a mean of 16.4 and a standard deviation of 1.4. A sample of size 36 is taken from the population. What is the the standard deviation of the sampling distribution? Round to the nearest thousandth. b. A population is normally distributed with a mean of 15.7 and a standard deviation of 1.4. A sample of size 24 is taken from the population. What is the the standard deviation of the sampling distribution? Round...
The mean of a population is 74 and the standard deviation is 16. The shape of...
The mean of a population is 74 and the standard deviation is 16. The shape of the population is unknown. Determine the probability of each of the following occurring from this population. a. A random sample of size 32 yielding a sample mean of 78 or more b. A random sample of size 130 yielding a sample mean of between 71 and 76 c. A random sample of size 219 yielding a sample mean of less than 74.7 (Round all...
The mean of a population is 77 and the standard deviation is 14. The shape of...
The mean of a population is 77 and the standard deviation is 14. The shape of the population is unknown. Determine the probability of each of the following occurring from this population. Appendix A Statistical Tables a. A random sample of size 33 yielding a sample mean of 78 or more b. A random sample of size 130 yielding a sample mean of between 76 and 79 c. A random sample of size 219 yielding a sample mean of less...
The mean of a population is 75 and the standard deviation is 12. The shape of...
The mean of a population is 75 and the standard deviation is 12. The shape of the population is unknown. Determine the probability of each of the following occurring from this population. a. A random sample of size 35 yielding a sample mean of 78 or more b. A random sample of size 150 yielding a sample mean of between 73 and 76 c. A random sample of size 219 yielding a sample mean of less than 75.8
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT