In: Statistics and Probability
Weight |
Fuel Efficiency |
|
Car1 |
3162 |
19 |
Car2 |
2566 |
29 |
Car3 |
2785 |
25 |
Car4 |
3283 |
26 |
Car5 |
3496 |
20 |
Car6 |
1044 |
27 |
Car7 |
2100 |
14 |
Car8 |
2539 |
45 |
Car9 |
1082 |
36 |
Car10 |
3025 |
13 |
Car11 |
2187 |
43 |
Car12 |
2686 |
18 |
Car13 |
1059 |
20 |
Car14 |
961 |
22 |
Car15 |
1764 |
36 |
Car16 |
1394 |
38 |
Car17 |
2658 |
40 |
Car18 |
2110 |
37 |
Car19 |
1569 |
17 |
Car20 |
2701 |
24 |
Solution(a)
Coefficient correlation r can be calculated as
Coefficient correlation r = ((n*Xi*Yi)-(Xi*Yi))/sqrt(((n*Xi^2)-(Xi)^2))*((n*Yi^2)-(Yi)^2))
Here n = 20
Weight(X) |
Fuel Efficiency(Y) |
X^2 |
Y^2 |
XY |
3162 |
19 |
9998244 |
361 |
60078 |
2566 |
29 |
6584356 |
841 |
74414 |
2785 |
25 |
7756225 |
625 |
69625 |
3283 |
26 |
10778089 |
676 |
85358 |
3496 |
20 |
12222016 |
400 |
69920 |
1044 |
27 |
1089936 |
729 |
28188 |
2100 |
14 |
4410000 |
196 |
29400 |
2539 |
45 |
6446521 |
2025 |
114255 |
1082 |
36 |
1170724 |
1296 |
38952 |
3025 |
13 |
9150625 |
169 |
39325 |
2187 |
43 |
4782969 |
1849 |
94041 |
2686 |
18 |
7214596 |
324 |
48348 |
1059 |
20 |
1121481 |
400 |
21180 |
961 |
22 |
923521 |
484 |
21142 |
1764 |
36 |
3111696 |
1296 |
63504 |
1394 |
38 |
1943236 |
1444 |
52972 |
2658 |
40 |
7064964 |
1600 |
106320 |
2110 |
37 |
4452100 |
1369 |
78070 |
1569 |
17 |
2461761 |
289 |
26673 |
2701 |
24 |
7295401 |
576 |
64824 |
44171 |
549 |
109978461 |
16949 |
1186589 |
Correlation coefficient r =
((20*1186589)-(44171*549))/sqrt(((20*109978461)-(44171*44171))*((20*16949)-(549*549)))
= -518099/sqrt(248491979*37579) = -0.1695
Form the correlation coefficient r we can see that correlation
coefficient is in negative that means both variables are negatively
correlated with each other and both variables are very weakly
correlated with each other.
Solution(b)
Coefficient of determination r^2 = (Coefficient correlation)^2 =
(-0.1695)^2 = 0.0287
So r^2 or coefficient of determination tells us that this model
explains 2.87% variation in dependent variable due to variation in
independent variable.