In: Economics
The data below relates to income levels and expenses of foods in U.S dollars (00).
Income (X) |
Expenditure (Y) |
35 |
9 |
49 |
15 |
21 |
7 |
39 |
11 |
15 |
5 |
28 |
8 |
25 |
9 |
Calculate the Pearson correlation and interpret the results.
The Pearson correlation coefficient
\(\mathrm{r}=\frac{s_{x y}}{\sqrt{S_{x x} S_{y y}}}\)
where;
\(\mathrm{S}_{\mathrm{xy}}=\Sigma x y-\frac{\Sigma x \Sigma y}{n}\)
\(\mathrm{S}_{\mathrm{xx}}=\Sigma x^{2}-\frac{(\Sigma \mathrm{x})^{2}}{n}\)
\(\mathrm{S}_{\mathrm{yy}}=\Sigma y^{2}-\frac{(\Sigma y)^{2}}{n}\)
Income (X) |
Expenditure (Y) |
X2 |
Y2 |
XY |
35 |
9 |
1225 |
81 |
315 |
49 |
15 |
2401 |
225 |
735 |
21 |
7 |
441 |
49 |
147 |
39 |
11 |
1521 |
121 |
429 |
15 |
5 |
225 |
25 |
75 |
28 |
8 |
784 |
64 |
224 |
25 |
9 |
625 |
81 |
225 |
∑= 212 |
∑= 64 |
∑= 7222 |
∑= 646 |
∑= 2150 |
\(\mathrm{S}_{\mathrm{xy}}=2150-\frac{(212 \times 64)}{7}=211.71\)
\(\mathrm{~S}_{\mathrm{xx}}=7222-\frac{(212)^{2}}{7}=801.4\)
\(\mathrm{~S}_{\mathrm{yy}}=64-\frac{(64)^{2}}{7}=60.86\)
\(\mathrm{r}=\frac{s_{x y}}{\sqrt{S_{x x} S_{y y}}}=\frac{211.71}{\sqrt{801.4 \times 60.86}}\)
r = 0.9586
There is a strong positive correlation between income and expenditure.
There is a strong positive correlation between income and expenditure.