Question

In: Advanced Math

consider the function f(x)=3x-5/sqrt x^2+1. given f'(x)=5x+3/(x^2+1)^3/2 and f''(x)=-10x^2-9x+5/(x^2+1)^5/2 a) find the local maximum and minimum...

consider the function

f(x)=3x-5/sqrt x^2+1. given f'(x)=5x+3/(x^2+1)^3/2 and f''(x)=-10x^2-9x+5/(x^2+1)^5/2

a) find the local maximum and minimum values. Justify your answer using the first or second derivative test . round your answers to the nearest tenth as needed.

b)find the intervals of concavity and any inflection points of f. Round to the nearest tenth as needed.

c)graph f(x) and label each important part (domain, x- and y- intercepts, VA/HA, CN, Increasing/decreasing, local min/max values, intervals of concavity/ inflection points of f?

Solutions

Expert Solution


Related Solutions

Question1: Find the interval of increase and decrease of given function f(x)=3x^5-5x^3 f(x)=1/3 x^3-9x+2
Question1: Find the interval of increase and decrease of given function f(x)=3x^5-5x^3 f(x)=1/3 x^3-9x+2
Find the local maximum and minimum values and saddle point(s) of the function. f(x,y)=5-10x+12y-5x^2-4y^3
Find the local maximum and minimum values and saddle point(s) of the function. f(x,y)=5-10x+12y-5x^2-4y^3
1. Consider the following curve f(x)= X^3 - 5x^2 +7x-5 Find the coordinates of the minimum and the maximum.
  1. Consider the following curve f(x)= X^3 - 5x^2 +7x-5 Find the coordinates of the minimum and the maximum. 2. The curve y= x^3 + ax^2 + bx + c has a relative max at x=-3 and a relative minimum at x= 1. Find the values of a and b. 3. Find the equation of the perpendicular line to the curve x^2 + 2xy - 2y^2 + x=2 at the point (-4,1) 4. Find the slant asymptote f(x)= (4x^2...
Consider the function f(x)=2x^3-9x^2+4, over the interval [-1,5] a.Find the local maximum and minimum. b.Find the...
Consider the function f(x)=2x^3-9x^2+4, over the interval [-1,5] a.Find the local maximum and minimum. b.Find the absolute maximum and minimum.
1-Find the relative maximum and minimum for the function, 1/3*x^3-9x+2 2-Determine the intervals on which the...
1-Find the relative maximum and minimum for the function, 1/3*x^3-9x+2 2-Determine the intervals on which the function f(x)=1+2x+8/x 3- Identify the critical number of f(x)=x^2-5x+6 on interval [-2,2] 4- Identify the intervals where the function, f(x)=2x^3-24x+2 5- ln(sin^2x) find f'(x)
Differentiate each. give reasonably simplified answers. Box ANSERS. (a)=ln[(x^9*(5x+1)^4*(11x+2))/((8x+9)(3x^5-2x+1))] (b) y=log[((8x+3)^2 * (x^3+5x^2-9x+1))/(7x+3)^5] (c) Given f(x)=(4x)^10x^3,...
Differentiate each. give reasonably simplified answers. Box ANSERS. (a)=ln[(x^9*(5x+1)^4*(11x+2))/((8x+9)(3x^5-2x+1))] (b) y=log[((8x+3)^2 * (x^3+5x^2-9x+1))/(7x+3)^5] (c) Given f(x)=(4x)^10x^3, find f'(x) (d) Differentiate f(x)=4x^10x^3, find f'(x)
1. Find the derivative.   f(x) = x6 · 3x 2.  Find the absolute maximum and minimum values...
1. Find the derivative.   f(x) = x6 · 3x 2.  Find the absolute maximum and minimum values on the closed interval [-1,8] for the function below. If a maximum or minimum value does not exist, enter NONE. f(x) = 1 − x2/3 3.  Find the derivative. f(x) = x5 · e6x Consider the following. f(x) = -19ln(84x) Compute f '(x), then find the exact value of f ' (3).
Using MATLAB, Consider the polynomial f(x) = 3x^3 + 5x^2 − 58x − 40. Find the...
Using MATLAB, Consider the polynomial f(x) = 3x^3 + 5x^2 − 58x − 40. Find the three roots of the polynomial, i.e, x where f(x) = 0, using: (i) Bisection method, and (ii) Newton’s method. Report the number of iterations taken by each algorithm using a tolerance of 10^−8 .
1. a. Find the relative maximum and minimum values of f(x, y) = (3x^2) − (2y^2)...
1. a. Find the relative maximum and minimum values of f(x, y) = (3x^2) − (2y^2) b. Find the relative maximum and minimum values of f(x, y) = (x^3) + (y^3) − 6xy . The expression that you may need D = fxx(x0, y0)fyy(x0, y0) − (fxy(x0, y0))2
Find the equation of the osculating circle at the local minimum of f(x)=4x^3−9x^2+(15/4)x−7.
Find the equation of the osculating circle at the local minimum of f(x)=4x^3−9x^2+(15/4)x−7.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT