In: Statistics and Probability
A garden seed wholesaler wishes to test the claim that tomato seeds germinate faster when each individual seed is "pelletized" within a coating of corn starch. The table below shows the germination times, in days, of six pelletized seeds. The table also shows the germination times in days of six un-coated seeds (the controls).
Pelletized: 8 6 7 8 10 7
Control: 11 8 9 10 7 11
Can you conclude that the mean germination time for pelletized seeds is less than the mean for the un-pelletized seeds? Use the α = 0.05 level of significance.
Ho :   µ1 - µ2 =   0  
       
Ha :   µ1-µ2 <   0  
       
          
       
Level of Significance ,    α =   
0.05          
          
       
Sample #1   ---->   1  
       
mean of sample 1,    x̅1=   7.67  
       
standard deviation of sample 1,   s1 =   
1.366260102          
size of sample 1,    n1=   6  
       
          
       
Sample #2   ---->   2  
       
mean of sample 2,    x̅2=   9.333  
       
standard deviation of sample 2,   s2 =   
1.63          
size of sample 2,    n2=   6  
       
          
       
difference in sample means = x̅1-x̅2 =   
7.667   -   9.3333   =  
-1.6667
          
       
std error , SE =    √(s1²/n1+s2²/n2) =   
0.8692          
t-statistic = ((x̅1-x̅2)-µd)/SE = (   -1.6667  
/   0.8692   ) =   -1.9174
          
       
Degree of freedom, = 9      
   
          
       
          
       
t-critical value , t* =       
-1.8331   (excel function: =t.inv(α,df)  
   
Decision:   | t-stat | > | critical value |, so,
Reject Ho          
   
p-value =        0.04371   [
excel function: =T.DIST(t stat,df) ]   
   
Conclusion:     p-value<α , Reject null
hypothesis          
   
yes, you conclude that the mean germination time for pelletized seeds is less than the mean for the un-pelletized seeds