Question

In: Mechanical Engineering

Nitrogen (N2) contained in a piston–cylinder arrangement, initially at 9.9 bar and 421 K, undergoes an...

Nitrogen (N2) contained in a piston–cylinder arrangement, initially at 9.9 bar and 421 K, undergoes an expansion to a final temperature of 300 K, during which the pressure–volume relationship is pV1.1 = constant. Assuming the ideal gas model for the N2, determine the heat transfer in kJ/kg.

Solutions

Expert Solution


Related Solutions

Five kg of water is contained in a piston–cylinder assembly, initially at 5 bar and 500°C....
Five kg of water is contained in a piston–cylinder assembly, initially at 5 bar and 500°C. The water is slowly heated at constant pressure to a final state. The heat transfer for the process is 2660 kJ and kinetic and potential energy effects are negligible. Determine the final volume, in m3, and the work for the process, in kJ. There is no final temperature information given.
Two kg of water is contained in a piston–cylinder assembly, initially at 10 bar and 200°C....
Two kg of water is contained in a piston–cylinder assembly, initially at 10 bar and 200°C. The water is slowly heated at constant pressure to a final state. If the heat transfer for the process is 1740 kJ, determine the temperature at the final state, in °C, and the work, in kJ. Kinetic and potential energy effects are negligible. (Moran, 01/2018, p. P-23) Moran, M. J., Shapiro, H. N., Boettner, D. D., Bailey, M. B. (01/2018). Fundamentals of Engineering Thermodynamics,...
Propane vapor initially at 7.0 bar and 50C (State 1) is contained within a piston-cylinder device....
Propane vapor initially at 7.0 bar and 50C (State 1) is contained within a piston-cylinder device. The refrigerant is cooled at constant volume until its temperature reaches -10C (State 2) and is then compressed isothermally to a pressure of 6.0 bar (State 3). (a) Locate the state points on appropriately labeled p-v diagram. (b) Determine the specific volume (in m3 /kg), internal energy (in kJ/kg) and enthalpy (in kJ/kg) at each state point.
An ideal gas is contained in a piston-cylinder device and undergoes a power cycle as follows:...
An ideal gas is contained in a piston-cylinder device and undergoes a power cycle as follows: 1-2 isentropic compression from an initial temperature T1 5 208C with a compression ratio r 5 5 2-3 constant pressure heat addition 3-1 constant volume heat rejection The gas has constant specific heats with cv 5 0.7 kJ/kg·K and R 5 0.3 kJ/kg·K. (a) Sketch the P-v and T-s diagrams for the cycle. (b) Determine the heat and work interactions for each pro- cess,...
Nitrogen gas is contained in a rigid 1-m3 tank, initially at 5 bar, 300 K. Heat...
Nitrogen gas is contained in a rigid 1-m3 tank, initially at 5 bar, 300 K. Heat transfer to the contents of the tank occurs until the temperature has increased to 400 K. During the process, a pressure-relief valve allows nitrogen to escape, maintaining constant pressure in the tank. Neglecting kinetic and potential energy effects, and using the ideal gas model with constant specific heats evaluated at 350 K, determine (a) the mass of nitrogen that escapes, in kg, and (b)...
Oxygen is contained in a piston-cylinder system initially at a temperature of 40 oC and a...
Oxygen is contained in a piston-cylinder system initially at a temperature of 40 oC and a pressure of 150 kPa. The piston is 1 m in diameter and initially 20 cm above the base of the cylinder. Heat is added at constant pressure until the piston has moved 30 cm, so it's now at 50 cm. I found the mass of the system to be 0.2898 kg, and T2 = 783K. a) Using the table of properties of oxygen as...
Consider a piston cylinder device with a volume of 0.04 m3 and initially contains air at 293 K and 1 bar.
  Consider a piston cylinder device with a volume of 0.04 m3 and initially contains air at 293 K and 1 bar. It is desired to reverse the cycle and use it as a refrigerator. In this case the process would begin with PV1.36 = constant process from an initial state of 293 K and a pressure of 10 Bars. The gas is allowed to expand to a volume 3.5 times the volume of state 1. It then follows a...
500 g of saturated liquid water is contained in a piston-cylinder arrangement. The inside diameter of...
500 g of saturated liquid water is contained in a piston-cylinder arrangement. The inside diameter of the cylinder is 100 mm. The water is heated at a constant pressure of 150 kPa until it becomes saturated vapor. Determine (a) the distance through which the piston is raised, and (b) the amount of energy transferred to the water
Air is contained in a piston-cylinder. Initially, the 0.35 kg of air is at 2 MPa...
Air is contained in a piston-cylinder. Initially, the 0.35 kg of air is at 2 MPa and 350°C. The air is first expanded isothermally to 500 kPa, then compressed polytropically with a polytropic exponent of 1.25 to the initial pressure, and finally compressed at the constant pressure to the initial state. Calculate the net heat transfer during the polytropic process in kJ assuming constant specific heats at 300 K (with 3 significant figures).
Water contained in a piston-cylinder assembly as shown in the Figure below, initially at 1.5 ???...
Water contained in a piston-cylinder assembly as shown in the Figure below, initially at 1.5 ??? and a quality of 20%, is heated at a constant pressure until the piston hits the stops. Heating then continues until the water is saturated vapor. Show the processes of the water in series on a sketch of the ?-? diagram. For the overall process of the water, evaluate the work and heat transfer, each in ??⁄??. Kinetic and potential effects are negligible. (please...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT