Question

In: Statistics and Probability

Refer to Exhibit 8-1. If the sample mean is 9 hours, then the 95% confidence interval...

Refer to Exhibit 8-1. If the sample mean is 9 hours, then the 95% confidence interval is approximately

Exhibit 8-1: In order to estimate the average time spent on the computer terminals per student at a local university, data were collected from a sample of 81 business students over a one-week period. Assume the population standard deviation is 1.2 hours.

a. 7.04 to 110.96 hours

b. 7.36 to 10.64 hours

c. 7.80 to 10.20 hours

d. 8.74 to 9.26 hours

Solutions

Expert Solution

Solution :


Given that,

Point estimate = sample mean =     = 9

Population standard deviation =    =1.2

Sample size n =81

At 95% confidence level the z is ,

= 1 - 95% = 1 - 0.95 = 0.05

/ 2 = 0.05 / 2 = 0.025

Z/2 = Z0.025 = 1.96   ( Using z table )

Margin of error = E =   Z/2    * ( /n)
= 1.96 * ( 1.2 / 81)

= 0.26
At 95% confidence interval estimate of the population mean
is,

- E < < + E

9 - 0.26 <   < 9+ 0.26

8.74 <   < 9.26

d. 8.74 to 9.26 hours


Related Solutions

Refer to the accompanying data set and construct a 95​% confidence interval estimate of the mean...
Refer to the accompanying data set and construct a 95​% confidence interval estimate of the mean pulse rate of adult​ females; then do the same for adult males. Compare the results. Males : 86. 76. 49. 61. 55. 63. 53. 73. 53. 61. 74. 59. 63. 76. 85. 68. 63. 94. 41. 84. 74. 64. 69. 72. 55. 68. 58. 78. 69. 66. 64. 94. 56. 66. 60. 57. 68. 72. 87. 60. Females: 81. 91. 60. 68. 57. 81....
Refer to the accompanying data set and construct a 95​% confidence interval estimate of the mean...
Refer to the accompanying data set and construct a 95​% confidence interval estimate of the mean pulse rate of adult​ females; then do the same for adult males. Compare the results. Males Females 84 80 77 97 52 60 59 65 51 55 59 79 52 78 75 85 50 86 65 59 70 34 62 68 65 85 76 74 79 75 65 63 68 68 99 81 44 62 86 64 70 82 67 85 70 68 71...
Refer to the accompanying data set and construct a 95​% confidence interval estimate of the mean...
Refer to the accompanying data set and construct a 95​% confidence interval estimate of the mean pulse rate of adult​ females; then do the same for adult males. Compare the results. Males Females 84       78 71       95 49       56 63       64 53       54 61       82 51       81 75       88 54       89 62       57 69       36 59       65 62       86 78       74 80       75 65       64 65       68 94       77 45       61 86       61 71       82 63       83 74       68 74      ...
Refer to the accompanying data set and construct a 95% confidence interval estimate of the mean...
Refer to the accompanying data set and construct a 95% confidence interval estimate of the mean pulse rate of adult​ females; then do the same for adult males. Compare the results. Males   Females 84   81 72   97 51   56 62   67 55   54 64   81 51   78 79   87 53   86 63   56 71   37 59   67 63   84 81   77 85   78 64   61 65   67 96   81 45   58 89   65 69   85 64   81 71   70 70  ...
Construct a 95% confidence interval for an experiment that found the sample mean temperature for a...
Construct a 95% confidence interval for an experiment that found the sample mean temperature for a certain city in August was 101.82, with a population standard deviation of 1.2. There were 6 samples in this experiment. A group of 10, foot - surgery patients had a mean weight of 240 pounds. The sample standard deviation was 25 pounds. Find a confidence interval for a sample for the true mean weight of all foot – surgery patients. Find a 95% Confidence...
2. What is the sample size, n, for a 95% confidence interval on the mean, if...
2. What is the sample size, n, for a 95% confidence interval on the mean, if we know that the process’ standard error is 3.2 units, and we want to allow at most 1.0 units for our error? 3. Let’s say that you just randomly pulled 32 widgets from your production line and you determined that you need a sample size of 46 widgets, However, you get delayed in being able to pull another bunch of widgets from the line...
The 95% confidence interval for the mean, calculated from a sample of size n = 25...
The 95% confidence interval for the mean, calculated from a sample of size n = 25 is 2.233163 ≤ μ ≤ 3.966837 . Determine the sample mean X ¯ = (round to the first decimal place). Assuming that the data is normally distributed, determine the sample standard deviation s = (round to the first decimal place)
q1) The 95% confidence interval for the mean, calculated from a sample is 1.412011 ≤ μ...
q1) The 95% confidence interval for the mean, calculated from a sample is 1.412011 ≤ μ ≤ 2.587989. Determine the sample mean X-(this one x dash) =    q2) Assuming that the data is normally distributed with the population standard deviation =1.5, determine the size of the sample n =
14. A researcher estimates the 95% Confidence Interval for a sample (n=100) with a mean of...
14. A researcher estimates the 95% Confidence Interval for a sample (n=100) with a mean of M=3. The population mean and standard deviation are known as 2.5±2 (µ±σ). What is the upper confidence limit for this interval? A) 0.392 B) 1.96 C) 2.608 D) 3.392 E) There is not enough information to answer this question.
Forma a 95% confidence interval on the mean pouring temperature for iron castings if a sample...
Forma a 95% confidence interval on the mean pouring temperature for iron castings if a sample of size 25 yielded a mean of 2560 and a standard deviation (s) of 20.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT