In: Statistics and Probability
Two random samples are taken, one from among UVA students and the other from among UNC students. Both groups are asked if academics are their top priority. A summary of the sample sizes and proportions of each group answering yes'' are given below:
UVA (Pop. 1):n1=80, p̂ 1=0.72
UNC (Pop. 2):n2=81, p̂ 2=0.64
Find a 97.7% confidence interval for the difference p1−p2 of the population proportions.
Confidence interval = ?????
-any chance you can also explain how this is done on a calculator? If not possible, I understand. Please help me solve it.
sample #1   ----->  
first sample size,     n1=   80
proportion success of sample 1 , p̂1=   
0.7200000
      
sample #2   ----->  
second sample size,     n2 =    81
proportion success of sample 1 , p̂ 2=     
0.640000
α=1-0.977=0.023
Z critical value =   Z α/2 =   
2.273   [excel function: =normsinv(α/2)  
   
          
       
Std error , SE =    SQRT(p̂1 * (1 - p̂1)/n1 + p̂2 *
(1-p̂2)/n2) =     0.07324  
       
margin of error , E = Z*SE =    2.273  
*   0.0732   =   0.16651
          
       
confidence interval is       
           
lower limit = (p̂1 - p̂2) - E =    0.080  
-   0.1665   =   -0.0865117
upper limit = (p̂1 - p̂2) + E =    0.080  
+   0.1665   =   0.2465117
          
       
so, confidence interval is (  
-0.0865   < p1 - p2 <  
0.2465   )  
=================
number of successes, sample 1 = x1= np^ = 80*0.72=57.6
number of successes, sample 2 = x2= 81*0.64 = 51.84
calculator steps-
press the STAT, and highlights TESTS
2-PropZInt(x1,n1,x2,n2,CL)
2-PropZInt(57.6,80,51.84,.95)