Question

In: Chemistry

1/ A 10.64 mol sample of xenon gas is maintained in a 0.8062 L container at...

1/ A 10.64 mol sample of xenon gas is maintained in a 0.8062 L container at 299.9 K. What is the pressure in atm calculated using the van der Waals' equation for Xe gas under these conditions? For Xe, a = 4.194 L2atm/mol2 and b = 5.105×10-2 L/mol.

(......) atm

2/ According to the ideal gas law, a 0.9174 mol sample of krypton gas in a 1.363 L container at 267.1 K should exert a pressure of 14.75atm. What is the percent difference between the pressure calculated using the van der Waals' equation and the ideal pressure? For Kr gas, a = 2.318 L2atm/mol2 and b = 3.978×10-2 L/mol.  (......) %

3/ According to the ideal gas law, a 9.560 mol sample of argon gas in a 0.8480 L container at 495.3 K should exert a pressure of 458.2 atm. What is the percent difference between the pressure calculated using the van der Waals' equation and the ideal pressure? For Ar gas, a = 1.345 L2atm/mol2 and b = 3.219×10-2 L/mol. (......) %

Solutions

Expert Solution

1.

Van Der Waal's equation of state for a real gas is given by the following equation:

(P + a*(n/V)2)*((V/n)-b) = RT

We need to put the given values in the above equation, as shown below:

(P + 4.194*(10.64/0.8062)2)*((0.8062/10.64) - 0.05105) = 0.0821*299.9

This can be simplified to:

(P + 730.51)*0.0247 = 24.6218

So,

P = 266.324 atm

2.

Using the Van Der waal's equation of state in the same way as above, we calculate the pressure in this case as:

(P + 2.318*(0.9174/1.363)2)*((1.363/0.9174) - 0.03978) = 0.0821*261.7

Calculating in same way as above:

P = 13.809 atm

So the percent difference is calculated as:

((Ideal pressure - Van der Waal pressure)/Ideal pressure)*100

Putting values:

% difference = ((14.75-13.809)/14.75)*100 = 6.38%

3.

Using the Van Der waal's equation of state in the same way as above, we calculate the pressure in this case as:

(P + 1.345*(9.56/0.8480)2)*((0.8480/9.56) - 0.03219) = 0.0821*495.3

Calculating in same way as above:

P = 548.61 atm

So the percent difference is calculated as:

((|Ideal pressure - Van der Waal pressure|)/Ideal pressure)*100

% difference = ((|458.2-548.61|)/458.2)*100 = 19.73%


Related Solutions

A 10.77 mol sample of xenon gas is maintained in a 0.7572 L container at 300.2...
A 10.77 mol sample of xenon gas is maintained in a 0.7572 L container at 300.2 K. What is the pressure in atm calculated using the van der Waals' equation for Xegas under these conditions? For Xe, a = 4.194 L2atm/mol2 and b = 5.105×10-2 L/mol. According to the ideal gas law, a 0.9160 mol sample of oxygen gas in a 1.668 L container at 268.4 K should exert a pressure of 12.10 atm. By what percent does the pressure...
A 10.58 mol sample of xenon gas is maintained in a 0.8497 L container at 296.8...
A 10.58 mol sample of xenon gas is maintained in a 0.8497 L container at 296.8 K. What is the pressure in atm calculated using the van der Waals' equation for Xe gas under these conditions? For Xe, a = 4.194 L2atm/mol2 and b = 5.105×10-2 L/mol. According to the ideal gas law, a 0.9613 mol sample of nitrogen gas in a 1.181 L container at 273.6 K should exert a pressure of 18.27 atm. What is the percent difference...
According to the ideal gas law, a 9.776 mol sample of xenon gas in a 0.8177...
According to the ideal gas law, a 9.776 mol sample of xenon gas in a 0.8177 L container at 499.7 K should exert a pressure of 490.2 atm. By what percent does the pressure calculated using the van der Waals' equation differ from the ideal pressure? For Xe gas, a = 4.194 L2atm/mol2 and b = 5.105×10-2 L/mol.
A flexible container at an initial volume of 6.13 L contains 9.51 mol of gas. More...
A flexible container at an initial volume of 6.13 L contains 9.51 mol of gas. More gas is then added to the container until it reaches a final volume of 16.3 L. Assuming the pressure and temperature of the gas remain constant, calculate the number of moles of gas added to the container.
1.sample of a gas is in a sealed container. The pressure of the gas is 345...
1.sample of a gas is in a sealed container. The pressure of the gas is 345 torr , and the temperature is 43 ∘ C . If the temperature changes to 93 ∘ C with no change in volume or amount of gas, what is the new pressure, P 2 , of the gas inside the container? Using the same sample of gas (P1 = 345 torr , T1 = 43 ∘C ), we wish to change the pressure to...
A sample of 4.63 mol of xenon is confined at low pressure in a volume at...
A sample of 4.63 mol of xenon is confined at low pressure in a volume at a temperature of 51 °C. Describe quantitatively the effects of each of the following changes on the pressure, the average kinetic energy per molecule in the gas, and the root-mean-square speed. (a) The temperature is decreased to -66 °C. (b) The volume is halved. (c) The amount of xenon is increased to 6.02 mol. Give each answer as a decimal factor of the form:...
A sample of 4.63 mol of xenon is confined at low pressure in a volume at...
A sample of 4.63 mol of xenon is confined at low pressure in a volume at a temperature of 51 °C. Describe quantitatively the effects of each of the following changes on the pressure, the average kinetic energy per molecule in the gas, and the root-mean-square speed. (a) The temperature is decreased to -66 °C. (b) The volume is halved. (c) The amount of xenon is increased to 6.02 mol. Give each answer as a decimal factor of the form:...
A sample consisting of 2.0 mol CO2 occupies a rigid container (constant volume) of 15.0 L...
A sample consisting of 2.0 mol CO2 occupies a rigid container (constant volume) of 15.0 L at 300 K. When it is supplied with 2.35 kJ of energy as heat its temperature increases to 341 K. Assume that CO2 is described by the van der Waals equation, and calculate w, U, and H.
A 1.0 mol sample of helium gas and a 1.0 mol sample of ammonia gas are...
A 1.0 mol sample of helium gas and a 1.0 mol sample of ammonia gas are held at the same temperature. Assuming both behave as ideal gases, do they have the same total internal energy?
1.00 mol of A and 1.00 mol of B are placed in a 4.00-L container. After...
1.00 mol of A and 1.00 mol of B are placed in a 4.00-L container. After equilibrium is established, 0.400 mol of D is present in the container. Calculate the equilibrium constant for the reaction: A(g) + 3 B(g) <---> C(g) + 2 D(g)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT