In: Finance
The future worth in year 10 of an arithmetic gradient cash flow series for years 1 through 10 is $725,000. If the gradient increase each year, G, is $1750, determine the cash flow in year 1 at an interest rate of 8% per year.
The cash flow in year 1 is $______
FV = Sum [ CF * FVF(r%, n) ]
FVF(r%, n) = ( 1 +r)^n
r = Int rate per anum
n - Bal Yrs.
Let X be the CF in Year 1.
FV of Base CF i.e X is X * FVAF (r%, n)
= X * 14.4866
= 14.4866X
FVAF = SUm [ FVF(r%, n) ]
FV of Increments:
Year | Bal Yrs | Inc CF | FVF @8% | FV of CFs |
1 | 9 | $ - | 1.9990 | $ - |
2 | 8 | $ 1,750.00 | 1.8509 | $ 3,239.13 |
3 | 7 | $ 3,500.00 | 1.7138 | $ 5,998.38 |
4 | 6 | $ 5,250.00 | 1.5869 | $ 8,331.09 |
5 | 5 | $ 7,000.00 | 1.4693 | $ 10,285.30 |
6 | 4 | $ 8,750.00 | 1.3605 | $ 11,904.28 |
7 | 3 | $ 10,500.00 | 1.2597 | $ 13,226.98 |
8 | 2 | $ 12,250.00 | 1.1664 | $ 14,288.40 |
9 | 1 | $ 14,000.00 | 1.0800 | $ 15,120.00 |
10 | 0 | $ 15,750.00 | 1.0000 | $ 15,750.00 |
FV of Inc CFs | $98,143.55 |
Thus 14.4866X + 98143.55 = 725000
14.4866X = 725000 - 98143.55
= $ 626856.45 / 14.4866
= $ 43271.58
Year 1 CF is $ 43271.58
Proof:
Year | Bal Yrs | Inc CF | FVF @8% | FV of CFs |
1 | 9 | $ 43,271.58 | 1.9990 | $ 86,500.09 |
2 | 8 | $ 45,021.58 | 1.8509 | $ 83,331.80 |
3 | 7 | $ 46,771.58 | 1.7138 | $ 80,158.27 |
4 | 6 | $ 48,521.58 | 1.5869 | $ 76,997.65 |
5 | 5 | $ 50,271.58 | 1.4693 | $ 73,865.44 |
6 | 4 | $ 52,021.58 | 1.3605 | $ 70,774.79 |
7 | 3 | $ 53,771.58 | 1.2597 | $ 67,736.70 |
8 | 2 | $ 55,521.58 | 1.1664 | $ 64,760.37 |
9 | 1 | $ 57,271.58 | 1.0800 | $ 61,853.31 |
10 | 0 | $ 59,021.58 | 1.0000 | $ 59,021.58 |
FV of Inc CFs | $7,25,000.00 |