Question

In: Statistics and Probability

If a 95% confidence interval for two population proportions p1-p2 is a range of positive numbers,...

If a 95% confidence interval for two population proportions p1-p2 is a range of positive numbers, then what does this imply?

a) The relative size of the population proportions cannot be determined

b)With 95% confidence, there is no difference in the population proportions.

c) With 95% confidence, the first population proportion is greater than the second.

d) With 95% confidence, the first population proportion is less than the second.

Solutions

Expert Solution


Related Solutions

​a) If the confidence interval for the difference in population proportions p1​ - p2 includes​ 0,...
​a) If the confidence interval for the difference in population proportions p1​ - p2 includes​ 0, what does this​ imply? ​ b) If all the values of a confidence interval for two population proportions​ are​ positive, then what does​ this​ imply? ​ c) If all the values of a confidence interval for two population proportions​ are​ negative, then what does​ this​ imply? d) Explain the difference between sampling with replacement and sampling without replacement. Suppose you had the names of...
A 95% confidence interval for a difference in proportions p1-p2 if the samples have n1=60 with...
A 95% confidence interval for a difference in proportions p1-p2 if the samples have n1=60 with p^1=0.69 and n2=60 with p^2=0.56, and the standard error is SE=0.09.
Construct the indicated confidence interval for the difference between population proportions p1 - p2. Assume that...
Construct the indicated confidence interval for the difference between population proportions p1 - p2. Assume that the samples are independent and that they have been randomly selected. 4) x1 = 44, n1 = 64 and x2 = 50, n2 = 73; Construct a 95% confidence interval for the difference 4) between population proportions p1 - p2.
Construct a confidence Interval for p1- p2, at a 95% level of confidence, if x1= 366,...
Construct a confidence Interval for p1- p2, at a 95% level of confidence, if x1= 366, n1=535, x2=435, n2=593
a) Use the normal distribution to find a confidence interval for a difference in proportions p1-p2...
a) Use the normal distribution to find a confidence interval for a difference in proportions p1-p2 given the relevant sample results. Assume the results come from random samples. A 99% confidence interval for p1-p2 given that p^1=0.76 with n1=590 and p^2=0.67 with n2=260 Give the best estimate for p1-p2, the margin of error, and the confidence interval. Round your answer for the best estimate to two decimal places and round your answers for the margin of error and the confidence...
A 95% confidence interval of ________ means that there is a 95% chance that the population mean falls within the range between 5.1 and 6.1.
  T / F 12. A 95% confidence interval of ________ means that there is a 95% chance that the population mean falls within the range between 5.1 and 6.1. T / F 13. Mean is more sensitive to extreme values than median. T / F 14. A sampling distribution describes the distribution of a particular sample characteristic for all possible samples, random or not, of a specific sample size. T / F 15. t-distribution has a higher skewness than...
Confidence Intervals (Proportions) 1 Find the margin of error and 95% confidence interval for the following...
Confidence Intervals (Proportions) 1 Find the margin of error and 95% confidence interval for the following surveys. Round all answers to 2 decimal places. (a) A survey of 500 people finds that 56% plan to vote for Smith for governor. Margin of Error (as a percentage): Confidence Interval: % to % (b) A survey of 1500 people finds that 47% support stricter penalties for child abuse. Margin of Error (as a percentage): Confidence Interval: % to % 2 Assume that...
At a confidence level of 95% a confidence interval for a population proportion is determined to...
At a confidence level of 95% a confidence interval for a population proportion is determined to be 0.65 to 0.75. If the sample size had been larger and the estimate of the population proportion the same, this 95% confidence interval estimate as compared to the first interval estimate would be A. the same B. narrower C. wider
At a confidence level of 95% a confidence interval for a population proportion is determined to...
At a confidence level of 95% a confidence interval for a population proportion is determined to be 0.65 to 0.75. If the sample size had been larger and the estimate of the population proportion the same, this 95% confidence interval estimate as compared to the first interval estimate would be
95% Confidence Interval: 86.19 ± 0.364 (85.8 to 86.6) "With 95% confidence the population mean is...
95% Confidence Interval: 86.19 ± 0.364 (85.8 to 86.6) "With 95% confidence the population mean is between 85.8 and 86.6, based on 33945 samples." Short Styles: 86.19 (95% CI 85.8 to 86.6) 86.19, 95% CI [85.8, 86.6] Margin of Error: 0.364 What is the impact of your margin of error on your findings? Explain. Is there enough evidence to reject the null hypotheses, explain in plain English?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT