In: Finance
| The following facts apply to a convertible bond making semiannual payments: | 
| Conversion price | $ | 43 | /share | 
| Coupon rate | 6.8 | % | |
| Par value | $ | 1,000 | |
| Yield on nonconvertible debentures of same quality | 8 | % | |
| Maturity | 20 | years | |
| Market price of stock | $ | 42 | /share | 
| 
 What is the minimum price at which the convertible should sell? (Do not round intermediate calculations and round your answer to 2 decimal places, e.g., 32.16.)  | 
| K = Nx2 | 
| Bond Price =∑ [(Semi Annual Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 | 
| k=1 | 
| K =20x2 | 
| Bond Price =∑ [(6.8*1000/200)/(1 + 8/200)^k] + 1000/(1 + 8/200)^20x2 | 
| k=1 | 
| Bond Price = 881.24 | 
| Conversion price = Bond par value/conversion ratio | 
| 43 = 1000/Conversion ratio | 
| Conversion ratio = 23.26 | 
| Conversion value = Conversion ratio*current share price | 
| Conversion value = 23.2558139534884*42 | 
| Conversion value = 976.74 | 
Minimum price = min (881.24,976.74) = 881.24