In: Finance
The following facts apply to a convertible bond making semiannual payments: |
Conversion price | $ | 43 | /share |
Coupon rate | 6.8 | % | |
Par value | $ | 1,000 | |
Yield on nonconvertible debentures of same quality | 8 | % | |
Maturity | 20 | years | |
Market price of stock | $ | 42 | /share |
What is the minimum price at which the convertible should sell? (Do not round intermediate calculations and round your answer to 2 decimal places, e.g., 32.16.) |
K = Nx2 |
Bond Price =∑ [(Semi Annual Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
k=1 |
K =20x2 |
Bond Price =∑ [(6.8*1000/200)/(1 + 8/200)^k] + 1000/(1 + 8/200)^20x2 |
k=1 |
Bond Price = 881.24 |
Conversion price = Bond par value/conversion ratio |
43 = 1000/Conversion ratio |
Conversion ratio = 23.26 |
Conversion value = Conversion ratio*current share price |
Conversion value = 23.2558139534884*42 |
Conversion value = 976.74 |
Minimum price = min (881.24,976.74) = 881.24