In: Statistics and Probability
A random survey of autos parked in the student lot and the staff lot at 3 universities are provided in the table below. Are there differences between the universities in terms of cars driven by students and staff?
Student | Staff | |
University 1 | 214 | 210 |
University 2 | 66 | 24 |
University 3 | 55 | 47 |
a) Write appropriate hypotheses.
b) How many degrees of freedom are there?
c) Find ?2 and the P-value.
d) State your conclusion (use α = 0.05).
All workings must be shown.
Observed Frequencies | |||
Student | Staff | Total | |
University 1 | 214 | 210 | 424 |
University 2 | 66 | 24 | 90 |
University 3 | 55 | 47 | 102 |
Total | 335 | 281 | 616 |
Expected Frequencies | |||
Student | Staff | Total | |
University 1 | 335 * 424 / 616 = 230.5844 | 281 * 424 / 616 = 193.4156 | 424 |
University 2 | 335 * 90 / 616 = 48.9448 | 281 * 90 / 616 = 41.0552 | 90 |
University 3 | 335 * 102 / 616 = 55.4708 | 281 * 102 / 616 = 46.5292 | 102 |
Total | 335 | 281 | 616 |
(fo-fe)²/fe | |||
University 1 | (214 - 230.5844)²/230.5844 = 1.1928 | (210 - 193.4156)²/193.4156 = 1.422 | |
University 2 | (66 - 48.9448)²/48.9448 = 5.943 | (24 - 41.0552)²/41.0552 = 7.0851 | |
University 3 | (55 - 55.4708)²/55.4708 = 0.004 | (47 - 46.5292)²/46.5292 = 0.0048 |
a) Ho: There is no difference between the universities in terms of cars driven by students and staff.
Ha: There is a difference between the universities in terms of cars driven by students and staff.
b) Number of Rows = 2
Number of Columns = 3
df = (r-1)(c-1) = 2
c) Test statistic:
χ² = ∑ ((fo-fe)²/fe) = 1.1928 + 1.4220 + 5.9430 + 7.0851 + 0.0040 + 0.0048 = 15.6517
p-value = CHISQ.DIST.RT(15.6517, 2) = 0.0004
d) Conclusion:
p-value < α, Reject the null hypothesis.
There is enough evidence to conclude that there is a difference between the universities in terms of cars driven by students and staff.