Question

In: Chemistry

Calculate boiling point depression and freezing point depression. Make sure to include correctly written dissociation equation....

Calculate boiling point depression and freezing point depression. Make sure to include correctly written dissociation equation.

A. 0.25 m ethylene glycol -C2H6O2

B. 0.25 m NaCl

Solutions

Expert Solution

Answer A

Boiling point Elevation

delta Tb =i Kb *m

delta Tb is elevation in boiling point

Kb is boiling point elevationconstant

m is molality of solution which is given as 0.25 m

We have to calculate i for ethylene glycol

Ethylene glycol is an organic compound so it does not dissociate in solution and has an i factor of 1.

So i would be 1

delta Tb=Kb *m

Kb is constant(= Kb = 0.512°C/m)

delta Tb=i 0.25 * 0.512

=1* 0.25 *0.512

=0.128 deg CELCIUS

delta Tf (Depression in freezing point)= KfFreezing point depression constant) * m(molality)

Kf= 1.86°C/m

delta Tf=i 0.25 * 1.86 deg C

=1 *0.25 * 1.86

=0.465 deg Celcius

Answer B)

For 0.25 molal NaCl

delta Tf(Elevation in boiling point for NaCl)=Kf(molal boiling point elevation constant)

delta Tf = i Kf*0.25

For an electrolyte, such as sodium chloride, you must take into consideration that if 1 mol of NaCl dissolves, 2 mol of particles would result (1 mol Na+, 1 mol Cl).

NaCl....>Na+ + Cl-

Therefore, the van’t Hoff factor should be 2

i is vant Hoff factor

delta Tf=2 * Kf *0.25

Kf= the molal freezing point constant (1.86 °C/m)

delta Tf=2 *1.86 *0.25

=0.93 deg Celcius

delta Tb=i * Kb *m

Kb is molal boiling point elevation constant

(= Kb = 0.512°C/m)

=2 * 0.512 * 0.25

=0.256 degC


Related Solutions

Assuming 100% dissociation, calculate the freezing point ( ?f ) and boiling point ( ?b )...
Assuming 100% dissociation, calculate the freezing point ( ?f ) and boiling point ( ?b ) of 2.84 ? K3PO4(aq) . Colligative constants can be found in the chempendix. ?f= ∘C ?b= ∘C help please
Calculate the freezing point and boiling point in each solution,assuming complete dissociation of the solute....
Calculate the freezing point and boiling point in each solution, assuming complete dissociation of the solute. A. Calculate the freezing point of a solution containing 10.7 g FeCl3 in 164 g water. B. Calculate the boiling point of the solution above C. Calculate the freezing point of a solution containing 3.7 % KCl by mass (in water). D. Calculate the boiling point of the solution above.  
Assuming 100% dissociation, calculate the freezing point and boiling point of 0.550 mol of K3PO4 in...
Assuming 100% dissociation, calculate the freezing point and boiling point of 0.550 mol of K3PO4 in 1.00 kg of water. A) freezing point: Answer in Celsius B) boiling point: Answer in Celsius
Calculate the freezing point and boiling point in each solution, assuming complete dissociation of the solute....
Calculate the freezing point and boiling point in each solution, assuming complete dissociation of the solute. 1) Calculate the freezing point of a solution containing 10.6 g FeCl3 in 151 g water. 2) Calculate the boiling point of a solution above. 3) Calculate the freezing point of a solution containing 6.2% KCl by mass (in water). Express your answer using two significant figures. 4) Calculate the boiling point of a solution above 5) Calculate the freezing point of a solution...
Calculate the freezing point and boiling point in each solution, assuming complete dissociation of the solute....
Calculate the freezing point and boiling point in each solution, assuming complete dissociation of the solute. a.Calculate the freezing point of a solution containing 13.0 g FeCl3 in 164 g water. b.Calculate the boiling point of a solution above. c.Calculate the freezing point of a solution containing 3.9 % KCl by mass (in water). Express your answer using two significant figures. d.Calculate the boiling point of a solution above. e.Calculate the freezing point of a solution containing 0.162 m MgF2....
Calculate the freezing point and boiling point of each aqueous solution, assuming complete dissociation of the...
Calculate the freezing point and boiling point of each aqueous solution, assuming complete dissociation of the solute. A.) Calculate the freezing point of the solution containing 0.114 m K2S. B.) Calculate the boiling point of the solution above. C.) Calculate the freezing point of the solution containing 22.1 g of CuCl2 in 459 g water. D.) Calculate the boiling point of the solution above. E.) Calculate the freezing point of the solution containing 5.6 % NaNO3 by mass (in water)....
Calculate the freezing point and boiling point in each solution, assuming complete dissociation of the solute....
Calculate the freezing point and boiling point in each solution, assuming complete dissociation of the solute. a) Calculate the freezing point of a solution containing 12.2 g FeCl3 in 158 g water. b) Calculate the boiling point of a solution above. c) Calculate the freezing point of a solution containing 4.5 % KCl by mass (in water). d) Calculate the boiling point of a solution above. e) Calculate the freezing point of a solution containing 0.170 m MgF2. f) Calculate...
Calculate the freezing point and boiling point of each aqueous solution, assuming complete dissociation of the...
Calculate the freezing point and boiling point of each aqueous solution, assuming complete dissociation of the solute. Use Kf=1.86∘C/m and Kb=0.512∘C/m. Part A Calculate the freezing point of the solution containing 0.118 m K2S. Part B Calculate the boiling point of the solution above. Part C Calculate the freezing point of the solution containing 25.2 g of CuCl2 in 480 g water. Part D Calculate the boiling point of the solution above. Part E Calculate the freezing point of the...
9. Calculate the freezing point and boiling point of the following aqueous solutions, assuming complete dissociation:...
9. Calculate the freezing point and boiling point of the following aqueous solutions, assuming complete dissociation: (a) 10.5 g FeCl3 in 1.50
The formula that governs the depression of freezing point and elevation of boiling point for a...
The formula that governs the depression of freezing point and elevation of boiling point for a solution consisting of a solute dissolved in a solvent is: ΔT = i × kb × m where: ΔT = the temperature change between a pure solvent and its solution i = the number of species per mole of solute that are dissolved in the solvent (e.g., i = 1 for a non-ionic solute that does not break apart into ions; i = 2...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT