Let (Z, N, +, ·) be an ordered integral domain. Let {x1, x2, . . . , xn} be a subset of Z. Prove there exists an i, 1 ≤ i ≤ n such that xi ≥ xj for all 1 ≤ j ≤ n. Prove that Z is an infinite set. (Remark: How do you tell if a set is infinite??)
In: Advanced Math
i) A set of 4 6-tuples (“sextuplets”) is linearly independent: (always), (never), (sometimes). ii) A set of 6 4-tuples (“quadruplets”) is linearly independent: (always), (never), (sometimes). iii) A set of 4 equations with 6 unknown variables which is consistent has a unique solution: (always), (never), (sometimes). iv) A set of 4 equations with 6 unknown variables is inconsistent: (always), (never), (sometimes) v) A set of homogeneous equations is inconsistent: (always), (never), (sometimes) vi) The solution to a set of homogeneous equations is unique: (always), (never), (sometimes)
In: Advanced Math
For a 2 by 2 invertible matrix A, define the condition number to be cond(A) = ||A|| ⋅ ||A||-1. Assume that the matrix norm is defined using the Euclidean vector norm.
(a) Find two 2by2 invertible matrices B and C such that cond(B + C) < cond(B) + cond(C).
(b) Find two 2by2 invertible matrices B and C such that cond(B + C) > cond(B) + cond(C).
(c) Suppose that A is a symmetric invertible 2by2 matrix. Find cond(2A) and cond(A2) in terms of cond(A).
(d)do the results from part (c) hold if A is not symmetric? You can either prove the results, or find counterexamples.
In: Advanced Math
Use Laplace Tranform in solving the ff.:
After cooking for 45 minutes, when a cake is removed from an oven, its temperature is measured at 300°F. 3 minutes later, its temperature is 200°F. The oven is preheated, and so at t=0, the cake mixture is at the room temperature of 70°F. The temperature of the oven increases linearly until t=4 minutes, when the desired temperature of 300°F is attained; thereafter the oven temperature is constant 300°F for t is greater than or equal to 4 minutes.
Solve the following:
a.) devised a mathematical model for the temperature
of a cake while it is inside the oven and after it is taken out of
the oven.
b.) how long will it take the cake to cool of to a room temperature
of 70°F?
In: Advanced Math
Prove that \strongly connected" is an equivalence relation on
the vertex set of a directed graph
In: Advanced Math
In: Advanced Math
Is 100202345X a valid ISBN number? If not, what would the correct check digit have to be ?
Solve the congruence 121x ≡ 5 mod 350.
In: Advanced Math
The more compounding periods per year, the lower the effective rate of return. T or F
The stated interest rate is the real or true rate of return on an investment T or F
Compound interest yields considerably higher interest than simple interest. T or F
Interest is the rental fee charged by a lender to a business or individual for the use of money. T or F
Exact interest method uses 365 days as the time factor denominator in the simple interest formula T or F
The total payback of principal and interest is known as compound amount of a loan. T or F
In: Advanced Math
Prove the following for undirected graphs:
(a) A 3-regular graph must have an even number of vertices.
(b) The average degree of a tree is strictly less than 2.
In: Advanced Math
Compute growth function and VC dimension
H ={h: R -> {-1, +1} | h(x) = 1D(x) where D is a finite set of R}
In: Advanced Math
Please explain why and how the following are true.
I. p ⇒(q∧r) is equivalent to (p ⇒q)∧(p ⇒r)
II. Let p(x) and p(x) be defined on an random/arbitrary universe of discourse. Why, in words, is (∀x)[p(x) ∧ q(x)] equivalent to[(∀x)p (x)] ∧ [(∀x)q(x)]
In: Advanced Math
4. Verify that the Cartesian product V × W of two vector spaces V and W over (the same field) F can be endowed with a vector space structure over F, namely, (v, w) + (v ′ , w′ ) := (v + v ′ , w + w ′ ) and c · (v, w) := (cv, cw) for all c ∈ F, v, v′ ∈ V , and w, w′ ∈ W. This “product” vector space (V × W, +, ·) is commonly (and more appropriately) denoted as V ⊕ W, called the direct sum of V and W. The Euclidean plane R 2 ≡ R × R is in fact R ⊕ R. (Remark. This notion of direct sum can be extended to the direct sum of finitely many vector spaces V1 ⊕ V2 ⊕ · · · ⊕ Vk in a straightforward way.)
In: Advanced Math
Consider the Newton-Raphson method for finding root of a
nonlinear function
??+1=??−?(??)?′(??), ?≥0.
a) Prove that if ? is simple zero of ?(?), then the N-R iteration
has quadratic convergence.
b) Prove that if ? is zero of multiplicity ? , then the N-R
iteration has only linear convergence.
In: Advanced Math