In: Chemistry
What is the molar solubility of lead(II) chromate in 0.070M Na2S2O3? For PbCrO4, Ksp=2.0e-16; for Pb(S2O3)3^-4, Kf=2.2e6.
The dissociation equation is
PbCrO4 (s) <=======> Pb2+ (aq) + CrO42- (aq); Ksp = [Pb2+][CrO42-] = 2.0*10-16 ……(1)
Pb2+ reacts with Na2S2O3 as below
Pb2+ (aq) + 3 S2O32- (aq) ———-> Pb(S2O3)34- (aq); Kf = [Pb(S2O3)3]/[Pb2+][S2O32-]3 = 2.2*106 …..(2)
Add (1) and (2) and write
PbCrO4 (s) + 3 S2O32- (aq) ———-> Pb(S2O3)34- (aq) + CrO42- (aq)
K = [Pb(S2O3)34-][CrO42-]/[S2O32-]3 = [Pb(S2O3)34-]/[Pb2+][S2O32-]3*[Pb2+][CrO42-] = Ksp*Kf = 2.0*10-16*2.2*106 = 4.4*10-10
Set up the ICE cart as below.
PbCrO4 (s) + 3 S2O32- (aq) ———-> Pb(S2O3)34- (aq) + CrO42- (aq)
Initial 0.070 0 0
Change -3x x x
Equilibrium (0.070 - 3x) x x
Write down the expression for K as below.
K = [Pb(S2O3)34-][CrO42-]/[S2O32-]3 = (x).(x)/(0.070- 3x)3
===> 4.4*10-10 = x2/(0.070- 3x)3
Use the small x approximation; since K is small, we can assume x << 0.070 and write (0.070 - 3x) = 0.070. Plug in the value and write
4.4*10-10 = x2/(0.070)3 = x2/(3.43*10-4)
===> x2 = 4.4*10-10*3.43*10-4 = 1.5092*10-13
===> x = 3.8848*10-7 = 3.885*10-7
Since x = [Pb2+] = [CrO42-] = [PbCrO4] = 3885*10-7 M, hence the solubility of PbCrO4 is 3.885*10-7 M (ans).