In: Statistics and Probability
The following table shows the weights (in pounds) and the number of hours slept in a day by a random sample of infants. Test the claim that
Mnot equals≠0.
Use
alphaαequals=0.10.1.
Then interpret the results in the context of the problem. If convenient, use technology to solve the problem.
| 
 Weight, x  | 
 8.28.2  | 
 10.110.1  | 
 9.99.9  | 
 7.17.1  | 
 6.96.9  | 
 11.111.1  | 
 10.910.9  | 
 15.115.1  | 
|
|---|---|---|---|---|---|---|---|---|---|
| 
 Hours slept, y  | 
 14.814.8  | 
 14.714.7  | 
 14.114.1  | 
 14.214.2  | 
 13.913.9  | 
 13.213.2  | 
 13.813.8  | 
 12.412.4  | 
1. Identify the null and alternative hypotheses.
2. Calculate the test statistic
3. Calculate the P value
4. State Conclusion
| Regression Analysis | ||||||
| r² | 0.562 | |||||
| r | -0.750 | |||||
| Std. Error | 0.562 | |||||
| n | 8 | |||||
| k | 1 | |||||
| Dep. Var. | y,hours slept | |||||
| ANOVA table | ||||||
| Source | SS | df | MS | F | p-value | |
| Regression | 2.4341 | 1 | 2.4341 | 7.71 | .0322 | |
| Residual | 1.8947 | 6 | 0.3158 | |||
| Total | 4.3288 | 7 | ||||
| Regression output | confidence interval | |||||
| variables | coefficients | std. error | t (df=6) | p-value | 90% lower | 90% upper | 
| Intercept | 16.0912 | 0.82 | 19.67 | 0.00 | 14.50 | 17.68 | 
| x,weight | -0.2223 | 0.0801 | -2.776 | .0322 | -0.3779 | -0.0667 | 
1. Identify the null and alternative hypotheses.
Null Hypothesis M=0
Alternate Hypothesis M not equal to 0
2. Calculate the test statistic=-2.776
3. Calculate the P value=0.0322
4. State Conclusion
Since p value<alpha(0.10). Reject the null hypothesis.
There is significant evidence to conclude that M not equal to 0 at 10% level of significance.