Question

In: Math

use simpsons rule to find the integral from 0 to 1, n =4 sqrt(1+x^3)

use simpsons rule to find the integral from 0 to 1, n =4
sqrt(1+x^3)

Solutions

Expert Solution

Hope it helps.All the best


Related Solutions

Evaluate each integral using trig substitutions 1.) Integral of (3x^5dx)/(sqrt(16-x^2) 2.) Integral of (sqrt(x^2-16)dx)/x 3.) Integral...
Evaluate each integral using trig substitutions 1.) Integral of (3x^5dx)/(sqrt(16-x^2) 2.) Integral of (sqrt(x^2-16)dx)/x 3.) Integral of (6dx)/(16+16x^2)
evaluate the indefinite integral sqrt(4-x^2)
evaluate the indefinite integral sqrt(4-x^2)
Use Simpson’s Rule with n = 4 to approximate the value of the definite integral ∫4...
Use Simpson’s Rule with n = 4 to approximate the value of the definite integral ∫4 0 e^(−x^2) dx. (upper is 4, lower is 0)    Compute the following integrals (you may need to use Integration by Substitution): (a) ∫ 1 −1 (2xe^x^2) dx (upper is 1, lower is -1)       (b) ∫ (((x^2) − 1)((x^3) − 3x)^4)dx      
Evaluate the iterated integral. integral sqrt(pi) to 0 integral 3x to 0 integral xz to 0...
Evaluate the iterated integral. integral sqrt(pi) to 0 integral 3x to 0 integral xz to 0 of 15x^2 sin(y) dydzdx
Given a sequence x(n) for 0 ≤ n ≤ 3, where x(0)=4, x(1)=3, x(2)=2, and x(3)=1,...
Given a sequence x(n) for 0 ≤ n ≤ 3, where x(0)=4, x(1)=3, x(2)=2, and x(3)=1, evaluate your DFT X(k)
Use logarithmic differentiation to find the derivative of the function: y= sqrt(x)e^(x^3) (x^4 +1)^9 sin x
Use logarithmic differentiation to find the derivative of the function: y= sqrt(x)e^(x^3) (x^4 +1)^9 sin x
Evaluate the integral. (Use C for the constant of integration.) (x^2-1)/(sqrt(25+x^2)*dx Evaluate the integral. (Use C...
Evaluate the integral. (Use C for the constant of integration.) (x^2-1)/(sqrt(25+x^2)*dx Evaluate the integral. (Use C for the constant of integration.) dx/sqrt(9x^2-16)^3 Evaluate the integral. (Use C for the constant of integration.) 3/(x(x+2)(3x-1))*dx
1. Approximate the integral, exp(x), from 0 to 1, using the composite midpoint rule, composite trapezoid...
1. Approximate the integral, exp(x), from 0 to 1, using the composite midpoint rule, composite trapezoid rule, and composite Simpson’s method. Each method should involve exactly n =( 2^k) + 1 integrand evaluations, k = 1 : 20. On the same plot, graph the absolute error as a function of n.
4 a) Find the Fourier Integral representation of ?(?) = 1 ?? |?| < 1 0...
4 a) Find the Fourier Integral representation of ?(?) = 1 ?? |?| < 1 0 ?? |?| > 1 b) Find the Fourier Sine Transform of ?(?) = ? −|?| . Hence evaluate ∫ ?????? 1+?2 ??.
Given that h(x)=x+3 and g(x)=sqrt of x-4, find (g+h)(4), if it exists.
Given that h(x)=x+3 and g(x)=sqrt of x-4, find (g+h)(4), if it exists.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT