Question

In: Physics

Given: 2 balls collide m1= 0.126 kg          m2=0.126 kg Before collision: Yx(initial)= 4.00 m/s         V2x(initial)= -2.00...

Given: 2 balls collide

m1= 0.126 kg          m2=0.126 kg

Before collision:

Yx(initial)= 4.00 m/s         V2x(initial)= -2.00 m/s

Yy(initial)= 1.50 m/s          V2y(initial)= 2.00 m/s

After collision:

V1x(final)= -0.482 m/s            V2x(final)= 2.482 m/s

V1y(final)= 2.020 m/s             V2y(final)= 1.480 m/s

Calculate the x and y components of the total momentum of the system before the collision.

Calculate the x and y components of the total momentum of the system after the collision.

Is the momentum conserved? Explain.

Calculate the total momentum of the system before the collision.

Calculate the total momentum of the system after the collision.

Is the collision elastic, partially elastic, or inelastic?

Solutions

Expert Solution

hope it helps..


Related Solutions

Two balls of clay collide in a perfectly inelastic, head-on collision. Suppose m1 = 0.5 kg,...
Two balls of clay collide in a perfectly inelastic, head-on collision. Suppose m1 = 0.5 kg, m2 = 0.25 kg, v1o = +4 m/s, and v2o = -3 m/s. (a) Find the velocity of the combined clay ball after the collision. (b) Find the kinetic energy lost during the collision.
A collision occurs between two equal masses m1 and m2. Before the collision m2 is stationary....
A collision occurs between two equal masses m1 and m2. Before the collision m2 is stationary. After the collision both masses are moving differently. After the collision the position of the center of mass and motion of the center of mass respectively are best described as. ANSWER CHOICE A) halfway between the two masses, and stationary B) halfway between the two masses and moving C) halfway between the two masses and moving with the speed of mass m1 D) centered...
Two 2.0 kg bodies, A and B, collide. The velocities before the collision are: vA =(15iˆ-30jˆ)m/s...
Two 2.0 kg bodies, A and B, collide. The velocities before the collision are: vA =(15iˆ-30jˆ)m/s and :vB =(-10iˆ-5.0jˆ)m/s. After the collision, :vfA = (-5.0iˆ - 20jˆ ) m/s. What are (a) the final velocity of B and (b) the change in the total kinetic energy (including sign)?
Given: M1= 75kg; M2 = 50kg; V (M1) = 10 m/s North; V (M2) = 10...
Given: M1= 75kg; M2 = 50kg; V (M1) = 10 m/s North; V (M2) = 10 m/s West Action: Collision, two masses stick together, move at unspecified angle in M2's initial direction Question: Find magnitude of their speed together after collision.
Two 2.3 kg bodies, A and B, collide. The velocities before the collision are v →...
Two 2.3 kg bodies, A and B, collide. The velocities before the collision are v → A = ( 34 i ̂ + 29 j ̂ ) m/s and v → B = ( 19 i ̂ + 1.6 j ̂ ) m/s . After the collision, v → A ′ = ( 4.0 i ̂ + 12 j ̂ ) m/s . What are (a) the x-component and (b) the y-component of the final velocity of B? (c) What...
A proton with a velocity V = (2.00 m / s) i - (4.00 m /...
A proton with a velocity V = (2.00 m / s) i - (4.00 m / s) j - (1.00 m / s) k, a B = (1.00 T) i + (2.00 T) j- (1.00 T) k it moves within the magnetic field. What is the magnitude of the magnetic force (Fe) acting on the particle? (Qproton = 1.6x10-19 C)
Two blocks of masses m1= 2.00 kgand m2= 4.10 kg are released from rest at a...
Two blocks of masses m1= 2.00 kgand m2= 4.10 kg are released from rest at a height of h= 4.40 m on a frictionless track. When they meet on the level portion of the track, they undergo a head-on, elastic collision. Determine the maximum heights to which m1 and m2 rise on the curved portion of the track after the collision.
Block 1 with m1 = 0.127 kg and block 2 with m2 = 0.163 kg are...
Block 1 with m1 = 0.127 kg and block 2 with m2 = 0.163 kg are supported on a horizontal frictionless table whose surface is 1.75 m above a horizontal floor as shown in the Figure. Block 1 has an initial speed of v = 5.50 m/s toward block 2 which is initially at rest. A) (7 pts) Block 1 collides with block 2 and coalesces (forms one object). Calculate the velocity of the coalesced object. B) (10 pts) The...
A box of mass 0.200 kg is given an initial speed of 2 m/s up a...
A box of mass 0.200 kg is given an initial speed of 2 m/s up a ramp with an angle of θ = 45° from the horizontal. The coefficients of friction between the box and ramp are μs = .7 and μk = .5 a) How far up the ramp does the box go before it comes to rest? b) Does it start to slide down the ramp after it gets to its maximum distance up the ramp?
A cart of mass m1 = 5.69 kg and initial speed = 3.17 m/s collides head-on...
A cart of mass m1 = 5.69 kg and initial speed = 3.17 m/s collides head-on with a second cart of mass m2 = 3.76 kg, initially at rest. Assuming that the collision is perfectly elastic, find the speed of cart m2 after the collision.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT