In: Statistics and Probability
Running times (Y) and maximal aerobic capacity (X) for 14 female Runners. Data collected for running times and maximal aerobic capacity are listed below X: 61.32 55.29 52.83 57.94 53.31 51.32 52.18 52.37 57.91 53.93 47.88 47.41 47.17 51.05 Y: 39.37 39.80 40.03 41.32 42.03 42.37 43.93 44.90 44.90 45.12 45.60 46.03 47.83 48.55 (a) Calculate the mean, median, MAD, MSD, and standard deviation for each variable. ? [Include all your steps and explain all the steps involved in details] (b) Which of these statistics give a measure of the center of data and which give a measure of the spread of data? [Explain in your own words] (c) Calculate the correlation of the two variables and pro-duce a scatterplot of Y against X. [Use excel for scatterplot, show all your computations concerning the correlation and explain all your steps] (d) Why is it inappropriate to calculate the autocorrelation of these data? [Explain in your own words] Note: It should be typed on Microsoft word including all the formula used.
(a)
From the data values,
61.32 | 8.3264 | 69.3294 | 39.37 | 4.3286 | 18.7365 | |
55.29 | 2.2964 | 5.2736 | 39.8 | 3.8986 | 15.1989 | |
52.83 | 0.1636 | 0.0268 | 40.03 | 3.6686 | 13.4584 | |
57.94 | 4.9464 | 24.4672 | 41.32 | 2.3786 | 5.6576 | |
53.31 | 0.3164 | 0.1001 | 42.03 | 1.6686 | 2.7841 | |
51.32 | 1.6736 | 2.8008 | 42.37 | 1.3286 | 1.7651 | |
52.18 | 0.8136 | 0.6619 | 43.93 | 0.2314 | 0.0536 | |
52.37 | 0.6236 | 0.3888 | 44.9 | 1.2014 | 1.4434 | |
57.91 | 4.9164 | 24.1713 | 44.9 | 1.2014 | 1.4434 | |
53.93 | 0.9364 | 0.8769 | 45.12 | 1.4214 | 2.0205 | |
47.88 | 5.1136 | 26.1486 | 45.6 | 1.9014 | 3.6154 | |
47.41 | 5.5836 | 31.1763 | 46.03 | 2.3314 | 5.4356 | |
47.17 | 5.8236 | 33.9140 | 47.83 | 4.1314 | 17.0687 | |
51.05 | 1.9436 | 3.7775 | 48.55 | 4.8514 | 23.5364 | |
Sum | 741.91 | 43.4771 | 223.1131 | 611.78 | 34.5429 | 112.2176 |
For X
For Y
b)
Measure of the center: Mean
Measure of the spread: Mean Absolute Deviation (MAD), Mean Square Deviation (MSD) and Standard deviation (SD)
c)
The scatter plot is obtained in excel by following these steps,
Step 1: Write the data values in excel.
Step 2: Select the X and Y column then INSERT > Recommended Charts > Scatter > OK. The screenshot is shown below,
The correlation coefficient is obtained using the formula,
From the data values,
X | Y | |||||
61.32 | 39.37 | 8.3264 | -4.3286 | -36.0415 | 69.3294 | 18.7365 |
55.29 | 39.8 | 2.2964 | -3.8986 | -8.9528 | 5.2736 | 15.1989 |
52.83 | 40.03 | -0.1636 | -3.6686 | 0.6001 | 0.0268 | 13.4584 |
57.94 | 41.32 | 4.9464 | -2.3786 | -11.7654 | 24.4672 | 5.6576 |
53.31 | 42.03 | 0.3164 | -1.6686 | -0.5280 | 0.1001 | 2.7841 |
51.32 | 42.37 | -1.6736 | -1.3286 | 2.2235 | 2.8008 | 1.7651 |
52.18 | 43.93 | -0.8136 | 0.2314 | -0.1883 | 0.6619 | 0.0536 |
52.37 | 44.9 | -0.6236 | 1.2014 | -0.7492 | 0.3888 | 1.4434 |
57.91 | 44.9 | 4.9164 | 1.2014 | 5.9067 | 24.1713 | 1.4434 |
53.93 | 45.12 | 0.9364 | 1.4214 | 1.3311 | 0.8769 | 2.0205 |
47.88 | 45.6 | -5.1136 | 1.9014 | -9.7231 | 26.1486 | 3.6154 |
47.41 | 46.03 | -5.5836 | 2.3314 | -13.0177 | 31.1763 | 5.4356 |
47.17 | 47.83 | -5.8236 | 4.1314 | -24.0597 | 33.9140 | 17.0687 |
51.05 | 48.55 | -1.9436 | 4.8514 | -9.4291 | 3.7775 | 23.5364 |
Sum | -104.3934286 | 223.1131 | 112.2176 |
d)
Since X and Y are not time-series data, the auto-correlation can not be calculated.