Question

In: Statistics and Probability

2.Construct the confidence interval for μ 1 − μ 2 for the level of confidence and...

2.Construct the confidence interval for μ 1 − μ 2 for the level of confidence and the data from independent samples given. 90% confidence: n 1 = 28, x - 1 = 212, s 1 = 6 n 2 = 23, x - 2 = 198, s 2 = 5 99% confidence: n 1 = 14, x - 1 = 68, s 1 = 8 n 2 = 20, x - 2 = 43, s 2 = 3

Solutions

Expert Solution

Q1.
given that,
mean(x)=212
standard deviation , s.d1=6
sample size, n1=28
y(mean)=198
standard deviation, s.d2 =5
sample size,n2 =23
few text books follow a different method in calculating df.
df = ( sd1 ^2 / n1 + sd2 ^2 /n2 )^2 / (s1^4 / n1^2 ( n1-1)) + (s2^4 / n2^2 ( n2-1))
df = (( (6^2/28)+(5^2/23) ))^2 / (( 6^4 / (28^2 ( 28 - 1 )) ) + (5^4/(23^2(23-1))))
df = 48.98 ~ 49,
the value of t α at 0.1 los with 49 df is +1.6766 and -1.6766          
CI = x1 - x2 ± t a/2 * Sqrt ( sd1 ^2 / n1 + sd2 ^2 /n2 )
where,
x1,x2 = mean of populations
sd1,sd2 = standard deviations
n1,n2 = size of both
a = 1 - (confidence Level/100)
ta/2 = t-table value
CI = confidence interval
CI = [( 212-198) ± t a/2 * sqrt((36/28)+(25/23)]
= [ (14) ± t a/2 * 1.54]
= [ (14) ± 1.6766 * 1.54]
= [11.418 , 16.58]
we are 90% sure that the interval [11.355 , 16.645] contains the true population mean
-----------------------------------------------------------------------------------------------
Q2. n 1 = 14, x - 1 = 68, s 1 = 8 n 2 = 20, x - 2 = 43, s 2 = 3
given that,
mean(x)=68
standard deviation , s.d1=8
sample size, n1=14
y(mean)=43
standard deviation, s.d2 =3
sample size,n2 =20
few text books follow a different method in calculating df.
df = ( sd1 ^2 / n1 + sd2 ^2 /n2 )^2 / (s1^4 / n1^2 ( n1-1)) + (s2^4 / n2^2 ( n2-1))
df = (( (8^2/14)+(3^2/20) ))^2 / (( 8^4 / (14^2 ( 14 - 1 )) ) + (3^4/(20^2(20-1))))
df = 15.5820 ~16,
the value of t α at 0.01 los with 16 df is +2.9208 and -2.9208  
CI = x1 - x2 ± t a/2 * Sqrt ( sd1 ^2 / n1 + sd2 ^2 /n2 )
where,
x1,x2 = mean of populations
sd1,sd2 = standard deviations
n1,n2 = size of both
a = 1 - (confidence Level/100)
ta/2 = t-table value
CI = confidence interval
CI = [( 68-43) ± t a/2 * sqrt((64/14)+(9/20)]
= [ (25) ± t a/2 * 2.241]
= [ (25) ± 2.9208 * 2.241]
= [18.454 , 31.545]


Related Solutions

1.Construct the confidence interval for μ 1 − μ 2 for the level of confidence and...
1.Construct the confidence interval for μ 1 − μ 2 for the level of confidence and the data from independent samples given. 95% confidence: n 1 = 110, x - 1 = 77, s 1 = 15 n 2 = 85, x - 2 = 79, s 2 = 21 90% confidence: n 1 = 65, x - 1 = − 83, s 1 = 12 n 2 = 65, x - 2 = − 74, s 2 = 8...
Construct a confidence interval for p 1 minus p 2 at the given level of confidence....
Construct a confidence interval for p 1 minus p 2 at the given level of confidence. x 1 equals 379 ​, n 1 equals 506 ​, x 2 equals 421 ​, n 2 equals 559 ​, 95 ​% confidence The 95 ​% confidence interval for p 1 minus p 2 is ​(nothing ​,nothing​).
Construct a confidence interval for p 1 minus p 2 at the given level of confidence....
Construct a confidence interval for p 1 minus p 2 at the given level of confidence. x 1 equals29​, n 1 equals241​, x 2 equals31​, n 2 equals312​, 90​% confidence
Match the confidence level with the confidence interval for μ. _______ _____ 1. x̄ ± 2.575(...
Match the confidence level with the confidence interval for μ. _______ _____ 1. x̄ ± 2.575( σ ) √? _____ 2. x̄ ± 1.96( σ ) √? _____ 3. x̄ ± 1.645( σ ) √? A. 90% B. 95% C. 99%
Construct a confidence interval for p 1 minus p 2 p1−p2 at the given level of...
Construct a confidence interval for p 1 minus p 2 p1−p2 at the given level of confidence. x 1 equals x1= 375 375​, n 1 equals n1= 523 523​, x 2 equals x2= 432 432​, n 2 equals n2= 585 585​, 95 95​% confidence The researchers are nothing ​% confident the difference between the two population​ proportions, p 1 minus p 2 p1−p2​, is between nothing and nothing . ​(Use ascending order. Type an integer or decimal rounded to three...
Use the given level of confidence and statistics to construct a confidence interval for the population...
Use the given level of confidence and statistics to construct a confidence interval for the population proportion p=​195, x=​162; ​95% confidence
Construct a confidence interval of the populationproportion at the given level of confidence.x =...
Construct a confidence interval of the population proportion at the given level of confidence.x = 540, n = 1200, 96% confidence
Construct a confidence interval for p 1 minus p 2p1−p2 at the given level of confidence....
Construct a confidence interval for p 1 minus p 2p1−p2 at the given level of confidence. x1=357​, n1=502​, x2=427427​, n2=579, 99​% confidence
Construct a confidence interval of the population proportion at the given level of confidence. x equals...
Construct a confidence interval of the population proportion at the given level of confidence. x equals x= 120 120​, n equals n= 1100 1100​, 90 90​% confidence
Construct a confidence Interval for p1- p2, at a 95% level of confidence, if x1= 366,...
Construct a confidence Interval for p1- p2, at a 95% level of confidence, if x1= 366, n1=535, x2=435, n2=593
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT