In: Statistics and Probability
An agent for a real estate company wanted to predict the monthly rent for apartments based on the size of the apartment. The data for a sample of 25 apartments is available below. Perform a t test for the slope to determine if a significant linear relationship between the size and the rent exists.
a. At the 0.05 level of significance, is there evidence of a linear relationship between the size of the apartment and the monthly rent?
b. Construct a 95% confidence interval estimate of the population slope,
betaβ1.
Size_(sq._ft) Rent_($)
850 1950
1450 2575
1075 2200
1242 2525
728 1925
1495 2700
1146 2650
736 1935
700 1850
946 2175
1110 2375
1275 2625
1975 3300
1359 2825
1165 2400
1215 2475
1245 2100
1249 2675
1150 2200
896 2150
1361 2575
1040 2650
745 2200
990 1825
1210 2750
A. Find TSTAT
B. Find P-Value
C. 95% confidence interval is _
ΣX | ΣY | Σ(x-x̅)² | Σ(y-ȳ)² | Σ(x-x̅)(y-ȳ) | |
total sum | 28353 | 59610 | 1979590.64 | 3132016.0 | 2127641.80 |
mean | 1134.12 | 2384.40 | SSxx | SSyy | SSxy |
sample size , n = 25
here, x̅ = Σx / n= 1134.12 ,
ȳ = Σy/n =
2384.40
SSxx = Σ(x-x̅)² =
1979590.6400
SSxy= Σ(x-x̅)(y-ȳ) = 2127641.8
estimated slope , ß1 = SSxy/SSxx =
2127641.8 / 1979590.640
= 1.0748
intercept, ß0 = y̅-ß1* x̄ =
1165.4606
so, regression line is Ŷ =
1165.4606 + 1.0748 *x
SSE= (SSxx * SSyy - SS²xy)/SSxx =
845250.475
std error ,Se = √(SSE/(n-2)) =
191.703
............................
a)
slope hypothesis test
tail= 2
Ho: ß1= 0
H1: ß1╪ 0
n= 25
alpha = 0.05
estimated std error of slope =Se(ß1) = Se/√Sxx =
191.703 /√ 1979590.64
= 0.1363
t stat = estimated slope/std error =ß1 /Se(ß1) =
1.0748 / 0.1363
= 7.8883
Degree of freedom ,df = n-2= 23
p-value = 0.0000
decison : p-value<α , reject Ho
reject Ho and conclude that linear relations exists
between X and y
...................
b)
α= 0.05
t critical value= t α/2 =
2.069 [excel function: =t.inv.2t(α/2,df) ]
estimated std error of slope = Se/√Sxx =
191.70295 /√ 1979590.64
= 0.136
margin of error ,E= t*std error = 2.069
* 0.136 = 0.282
estimated slope , ß^ = 1.0748
lower confidence limit = estimated slope - margin of error
= 1.0748 - 0.282
= 0.7929
upper confidence limit=estimated slope + margin of error
= 1.0748 + 0.282
= 1.3566
CI(0.7929 , 1.3566)
..........................
Please revert back in case of any doubt.
Please upvote. Thanks in advance.