In: Statistics and Probability
An agent for a real estate company wanted to predict the monthly rent for apartments based on the size of the apartment. The data for a sample of 25 apartments is available below. Perform a t test for the slope to determine if a significant linear relationship between the size and the rent exists.
a. At the 0.05 level of significance, is there evidence of a linear relationship between the size of the apartment and the monthly rent?
b. Construct a 95% confidence interval estimate of the population slope, beta1.
-Find the test statistic. tSTATequals nothing (Round to two decimal places as needed.)
-Find the p value and round to three decimal places.
-Review the regression results and identify the bounds of the confidence interval, rounding to four decimal places.
Size_(sq._ft) Rent_($)
860 1975
1450 2650
1085 2225
1232 2500
728 1950
1495 2675
1146 2650
716 1925
710 1850
966 2125
1100 2400
1285 2650
1975 3300
1379 2775
1175 2425
1225 2450
1255 2125
1249 2725
1140 2175
886 2125
1371 2625
1030 2650
765 2225
990 1800
1210 2750
Ʃx = | 28423 |
Ʃy = | 59725 |
Ʃxy = | 70048050 |
Ʃx² = | 34299715 |
Ʃy² = | 145858125 |
Sample size, n = | 25 |
x̅ = Ʃx/n = 28423/25 = | 1136.92 |
y̅ = Ʃy/n = 59725/25 = | 2389 |
SSxx = Ʃx² - (Ʃx)²/n = 34299715 - (28423)²/25 = | 1985037.84 |
SSyy = Ʃy² - (Ʃy)²/n = 145858125 - (59725)²/25 = | 3175100 |
SSxy = Ʃxy - (Ʃx)(Ʃy)/n = 70048050 - (28423)(59725)/25 = | 2145503 |
a) Null and alternative hypothesis:
Ho: β₁ = 0 ; Ha: β₁ ≠ 0
α = 0.05
Slope, b = SSxy/SSxx = 2145503/1985037.84 = 1.080837
Sum of Square error, SSE = SSyy-SSxy²/SSxx = 3175100-(2145503)²/1985037.84 = 856160.26482
Standard error, se = √(SSE/(n-2)) = √(856160.26482/(25-2)) = 192.93615
Standard error for slope, se(b1) = se/√SSxx = 192.93615/√1985037.84 = 0.1369
Test statistic:
t = b1/se(b1) = 1.0808/0.1369 = 7.89
p-value = T.DIST.2T(ABS(7.8928), 23) = 0.000
Conclusion:
p-value < α Reject the null hypothesis.
b) Significance level, α = 0.05
Critical value, t_c = T.INV.2T(0.05, 23) = 2.0687
95% Confidence interval for slope:
Lower limit = b1 - tc*se(b1) = 1.0808 - 2.0687*0.1369 = 0.7976
Upper limit = b1 + tc*se(b1) = 1.0808 + 2.0687*0.1369 = 1.3641