In: Statistics and Probability
The weights in pounds of a breed of yearling cattle follows the Normal model
N(1128,62).
What weight would be considered unusually low for such an animal?
Select the correct choice below and fill in the answer boxes within your choice.
A.Any weight more than 2 standard deviations below the mean, or less than
nothing
pounds, is unusually low. One would expect to see a steer 3 standard deviations below the mean, or less than
nothing
pounds only rarely.
B.Any weight more than 3 standard deviations below the mean, or less than
nothing
pounds, is unusually low. One would expect to see a steer 2 standard deviations below the mean, or less than
nothing
pounds only rarely.
C.Any weight more than 1 standard deviation below the mean, or less than
nothing
pounds, is unusually low. One would expect to see a steer 2 standard deviations below the mean, or less than
nothing
pounds only rarely.
Solution:
The probability is said to be unusual if it is less than 5% i.e. less than 0.05
Given the normal distribution with = 1128 and = 62
According to the Empirical rule there is 95% chance that the observation lie within 2 standard deviations from the mean.
There is 5% chance that weight will be below - 2 or above + 2
The weights that are below - 2 are considered as Unusually low.
- 2 = 1128 - (2 * 62) = 1004
- 3 = 1128 - (3 * 62) = 942
Answer :
A. Any weight more than 2 standard deviations below the mean or less than 1004 pounds , is unusually low.One would expect to see a steer 3 standard deviations below the mean or less than 942 pounds is only rarely.
Please like if it helps me please please
Thank you so much