Question

In: Chemistry

Considering the enthalpy of mixing (ΔH mix), which statement is correct? a. Pb(NO3)4 is more strongly...

Considering the enthalpy of mixing (ΔH mix), which statement is correct?

a. Pb(NO3)4 is more strongly hydrated than Pb(NO3)2.

b. CsBr is more strongly hydrated than KBr.

c.The ΔH mix of SrBr2 is more exothermic than the ΔH mix of CaBr2.

d.The ΔH mix of FeCl2 is more exothermic than the ΔH mix of FeCl3.

Solutions

Expert Solution

Hit Thumbs Up! if u like it!

Answer is A

Strongly Hydrated means being surrounded by Water Molecule.

In first Pb is in +4 oxidation state in (Pb(NO3)4)

and Pb is in +2 oxidation state in (Pb(NO3)2)

Solvation is influenced by charge to size ratios. Higher the charge to size ratio, the easier it is for the species to be solvated by water molecules.

Hence Pb+4 is small in size so it is highly hydrated.

Positive ions will much more strongly attract the oxygen atom than the hydrogen atoms in water. The oxygen atom in water has a locally high electron density (partial negative charge), while the hydrogen atoms has a locally low electron density (partial positive charge). The strongest attraction happens when oxygen atoms point towards the cations, and the hydrogen atoms point away


Related Solutions

A solution is prepared by mixing 50 mL of 1 M Pb(NO3)2 and 75 mL of...
A solution is prepared by mixing 50 mL of 1 M Pb(NO3)2 and 75 mL of .5 M NaF. Calculate the concentration of F- ions present at equilibrium. (Hint: First, write and balance the double displacement reaction taking place between Pb(NO3)2 and NaF to form PbF2(s). Perform the necessary stoichiometry (including finding which reactant is limiting) to calculate how much of each reactant remains after the reaction goes to completion. Remember that stoichiometry has to be done in moles. Once...
A solution is prepared by mixing 100 mL of .01 M Pb(NO3)2 and 100 mL of...
A solution is prepared by mixing 100 mL of .01 M Pb(NO3)2 and 100 mL of .001 M NaF. Will PbF2(s) precipitate in this reaction? Calculate the concentration of F- ions present at equilibrium. PbF2(s) <--> Pb2+(aq) + 2F-(aq) Kc= 3.7E-8 Please show all work! Thank you!
Which of the following will lower the enthalpy (ΔH) for a reaction? Increasing the concentration of...
Which of the following will lower the enthalpy (ΔH) for a reaction? Increasing the concentration of the reactants. Raising the temperature of the reaction. Adding a catalyst for the reaction. Increasing the pressure of the reaction. None of the above.
In which of the reactions below is ΔH not an enthalpy of formation? Group of answer...
In which of the reactions below is ΔH not an enthalpy of formation? Group of answer choices Both b and c are not enthalpy of formation reactions. 2C(s) + O2(g) → 2CO(g) Mg(s) + Cl2(g) → MgCl2(s) Ca(s) + 1/2O2(g) → CaO(s) C(s) + O2(g) → CO2(g)
If we mix 19.0 mL of a 1.30 ✕ 10−3 M solution of Pb(NO3)2 with 18.6...
If we mix 19.0 mL of a 1.30 ✕ 10−3 M solution of Pb(NO3)2 with 18.6 mL of a 2.60 ✕ 10−3 M solution of NaBr, will a precipitate form? At this point we would identify the potential precipitate by switching the anions and using the solubility rules to decide if one of the potential products is potentially insoluble. Here the products would be PbBr2 and NaNO3. Of these, PbBr2 is considered "insoluble". The Ksp value for PbBr2 is 6.60 ...
A.) Calculate the enthalpy change, ΔH, for the process in which 37.9 g of water is...
A.) Calculate the enthalpy change, ΔH, for the process in which 37.9 g of water is converted from liquid at 4.6 ∘C to vapor at 25.0 ∘C . For water, ΔHvap = 44.0 kJ/mol at 25.0 ∘C and Cs = 4.18 J/(g⋅∘C) for H2O(l). B.)How many grams of ice at -29.4 ∘C can be completely converted to liquid at 20.7 ∘C if the available heat for this process is 5.90×103 kJ ? For ice, use a specific heat of 2.01...
A. Calculate the enthalpy change, ΔH, for the process in which 49.3 g of water is...
A. Calculate the enthalpy change, ΔH, for the process in which 49.3 g of water is converted from liquid at 18.5 ∘C to vapor at 25.0 ∘C . For water, ΔHvap = 44.0 kJ/mol at 25.0 ∘C ands = 4.18 J/(g⋅∘C) for H2O(l) B. How many grams of ice at -6.4 ∘C can be completely converted to liquid at 12.3 ∘C if the available heat for this process is 5.33×103 kJ ? For ice, use a specific heat of 2.01...
If we mix 40.0 mL of 3.00 M Pb(NO3)2 (aq) with 20.0 mL of 2.00 x...
If we mix 40.0 mL of 3.00 M Pb(NO3)2 (aq) with 20.0 mL of 2.00 x 10-3 M NaI (aq), does PbI2 (s) precipitate from solution? I yes, calculate how many moles of PbI2 (s) precipitate and the values of [Pb2+], [I-], [NO3-], and [Na+] at 25 C at equilibrium?
Part A Calculate the enthalpy change, ΔH, for the process in which 45.1 g of water...
Part A Calculate the enthalpy change, ΔH, for the process in which 45.1 g of water is converted from liquid at 17.6 ∘C to vapor at 25.0 ∘C . For water, ΔHvap = 44.0 kJ/mol at 25.0 ∘C and Cs = 4.18  J/(g⋅∘C) for H2O(l). Part B How many grams of ice at -16.1 ∘C can be completely converted to liquid at 13.3 ∘C if the available heat for this process is 5.83×103 kJ ? For ice, use a specific heat...
Part A Calculate the enthalpy change, ΔH, for the process in which 24.5 g of water...
Part A Calculate the enthalpy change, ΔH, for the process in which 24.5 g of water is converted from liquid at 5.0 ∘Cto vapor at 25.0 ∘C . For water, ΔHvap = 44.0 kJ/mol at 25.0 ∘C and Cs = 4.18  J/(g⋅∘C) for H2O(l). Express your answer to three significant figures and include the appropriate units. Hints ΔH = J SubmitMy AnswersGive Up Part B How many grams of ice at -9.0 ∘C can be completely converted to liquid at 26.4...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT