Question

In: Statistics and Probability

A car dealership claims that its average service time is less than 7 hours on weekdays....

A car dealership claims that its average service time is less than 7 hours on weekdays. A random sample of 16 service times was recorded and yielded the statistics x ̅=6.75 hours and s= 1.62 hours. Assume service times are normally distributed, is there enough evidence to support the dealership’s claim at 5% significance level? 10 marks (Please show every step for full marks)

Hypotheses:

Rejection Region:

Test Statistic:

Decision/Conclusion:

Solutions

Expert Solution

This is the left tailed test .

The null and alternative hypothesis is

H0 : = 7

Ha : < 7

Test statistic = t

= ( - ) / s / n

= (6.75 - 7) / 1.62 / 16

= -0.617

Test statistic = -0.617

df = 15

P-value = 0.2732

= 0.05

P-value >

Fail to reject the null hypothesis .

There is insufficient evidence to support the dealership’s claim at 5% significance level .


Related Solutions

A courier service advertises that its average delivery time is less than 6 hours for local...
A courier service advertises that its average delivery time is less than 6 hours for local deliveries. A sample of 16 local deliveries was recorded and yielded the statistics     x =   5.83 hours and s = 1.59 hours. At the 5% significance level, conduct a hypothesis test to determine whether there is sufficient evidence to support the courier’s advertisement.  
A car dealer claims that the average wait time for an oil change is less than...
A car dealer claims that the average wait time for an oil change is less than 30 minutes. The population of wait times is normally distributed and 26 customers are sampled. The sample mean is 28.7 minutes and the standard deviation of the sample is 2.5 minutes. Test the claim at the .05 significance level (α=.05) using the traditional method.
A social scientist claims that the average adult watches less than 26 hours of television per...
A social scientist claims that the average adult watches less than 26 hours of television per week. She collects data on 50 individuals’ television viewing habits and finds that the mean number watching television was 22.4 hours. If the population is normally distributed with a standard deviation of 8 hours, can we conclude at the 1% statistical significance level that she is right? Use the critical value and the test statistic to test the null hypothesis. Then calculate the p-value...
A baseball team claims that the mean length of its games is less than 2.2 hours....
A baseball team claims that the mean length of its games is less than 2.2 hours. State Upper H 0 and Upper H Subscript a in words and in symbols. Then determine whether the hypothesis test for this claim is? left-tailed, right-tailed, or? two-tailed. Explain your reasoning. State the null hypothesis in words and in symbols. Choose the correct answer below. A. The null hypothesis expressed in words? is, "the mean length of a baseball? team's games isnbsp at most...
The owner of a new car dealership claims the average number of days it takes his...
The owner of a new car dealership claims the average number of days it takes his dealership to sell a Chevrolet Aveo is 50 days. A random sample of 50 cars had a mean time on the dealer’s lot of 64 days. Assume the population standard deviation to be 7.0 days. Find the 95% confidence interval estimate of the population mean. State the Margin of Error, Best Point Estimate and Include the written statement Please list all the work.
On Time Airlines claims their average delay is less than 15 minutes per flight. A random...
On Time Airlines claims their average delay is less than 15 minutes per flight. A random sample of 35 flights has a sample mean of 14 minutes and standard deviation of 7 minutes. You will need to test the claim that the average delay is less than 15 minutes per flight using a 2.5% level of significance. a) State the hypotheses b) Find the rejection region. c) Will you reject or retain the null hypothesis? Show all work to support...
An airline claims that the no-show rate for passengers is less than 7%. In a sample...
An airline claims that the no-show rate for passengers is less than 7%. In a sample of 420 randomly selected reservations, 18 w ere no-shows. At α = 0.01, test the airline's claim. A. P-value = 0.002 < 0.01; reject H0; There is not enough evidence to support the airline's claim, that is less than 7% B. P-value = 0.003 < 0.01; reject H0; There is not enough evidence to support the airline's claim, that is less than 7% C....
The manager of the service department of a local car dealership has noted that the service...
The manager of the service department of a local car dealership has noted that the service times of a sample of 24 new automobiles has a standard deviation of 5 minutes. A.) Compute a 90% confidence interval estimate for the standard deviation of the service times (in minutes) for all their new automobiles. B.) The manager of the service department of a local car dealership wants to test the claim that the variance of the service time does not exceed...
The manager of the service department of a local car dealership has noted that the service...
The manager of the service department of a local car dealership has noted that the service times of a sample of 15 new automobiles has a sample standard deviation of S = 4 hours. We are interested to test the following hypotheses using α = 0.05 level of significance:   H0 : σ2 ≤ 14   Ha : σ2 > 14 1. Assuming that the population of service times follows an approximately normal distribution, what is the proper test statistic? A.Chi-square distribution...
The manager of the service department of a local car dealership has noted that the service...
The manager of the service department of a local car dealership has noted that the service times of a sample of 24 new automobiles has a standard deviation of 5 minutes. A.) Compute a 90% confidence interval estimate for the standard deviation of the service times (in minutes) for all their new automobiles. B.) The manager of the service department of a local car dealership wants to test the claim that the variance of the service time does not exceed...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT