Question

In: Statistics and Probability

this is a four part question and I am lost: the question is at the top...

this is a four part question and I am lost: the question is at the top and the data follows:

  1. Think about it:
    1. Were there any strong relationships indicated?
    2. Were there any extreme values that might skew results?
    3. How would you use the regression equations generated by the software?
    4. What preliminary conclusions would be supported and what further study indicated?

a.            Response: Hemoglobin Model: Glucoseb.           

General Regression Analysis: Hemoglobin versus Glucose

Regression Equation

Hemoglobin = 4.44742 + 0.0241019 Glucose

Coefficients

Term         Coef   SE Coef        T      P

Constant 4.44742 0.124943 35.5957 0.000

Glucose   0.02410 0.001017 23.6982 0.000

Summary of Model

S = 0.831988     R-Sq = 53.00%        R-Sq(adj) = 52.91%

PRESS = 348.310 R-Sq(pred) = 52.51%

Analysis of Variance

Source          DF   Seq SS   Adj SS   Adj MS        F          P

Regression       1 388.744 388.744 388.744 561.603 0.0000000

Glucose        1 388.744 388.744 388.744 561.603 0.0000000

Error          498 344.718 344.718    0.692

Lack-of-Fit 135 167.864 167.864    1.243    2.552 0.0000000

Pure Error   363 176.854 176.854    0.487

Total          499 733.462

Fits and Diagnostics for Unusual Observations

Obs Hemoglobin      Fit    SE Fit Residual St Resid

14          12 10.0150 0.121499   1.98503   2.41175 R X

17           6   7.7976 0.043273 -1.79759 -2.16352 R

22          12   9.6775 0.108033   2.32246   2.81529 R X

55          12   9.3883 0.096666   2.61168   3.16049 R X

74           6   7.7735 0.042763 -1.77349 -2.13445 R

84          11   9.5088 0.101378   1.49117   1.80576     X

88           6   7.8699 0.044908 -1.86990 -2.25078 R

99          11   8.3278 0.057982   2.67217   3.21961 R

133           6   7.7976 0.043273 -1.79759 -2.16352 R

138           6   7.8217 0.043801 -1.82169 -2.19261 R

142          10   8.1109 0.051299   1.88909   2.27490 R

152          10   7.9904 0.047940   2.00959   2.41943 R

159           6   7.8940 0.045485 -1.89400 -2.27988 R

161          11   8.5447 0.065267   2.45525   2.96019 R

165          6   7.8699 0.044908 -1.86990 -2.25078 R

173           6   7.7012 0.041344 -1.70118 -2.04725 R

189           6   7.8217 0.043801 -1.82169 -2.19261 R

192          10   9.7739 0.111861   0.22605   0.27419     X

202          10   8.0145 0.048588   1.98549   2.39052 R

218          10   8.1109 0.051299   1.88909   2.27490 R

223          12   9.7739 0.111861   2.22605   2.70010 R X

229           6   7.8458 0.044346 -1.84579 -2.22169 R

237          11   9.2196 0.090137   1.78040   2.15260 R

241          10   8.2073 0.054180   1.79268   2.15927 R

243          11   9.2196 0.090137   1.78040   2.15260 R

278          10   8.0627 0.049921   1.93729   2.33271 R

282           6   7.8458 0.044346 -1.84579 -2.22169 R

312           6   7.7012 0.041344 -1.70118 -2.04725 R

321          12 12.1600 0.209508 -0.16004 -0.19876     X

368          12   9.5811 0.104223   2.41887   2.93042 R X

375          11   8.9786 0.080983   2.02142   2.44121 R

385          11 10.1837 0.128295   0.81632   0.99305     X

470           6   7.8940 0.045485 -1.89400 -2.27988 R

471           6   7.9181 0.046077 -1.91810 -2.30898 R

475           6   7.7735 0.042763 -1.77349 -2.13445 R

483           6   7.9181 0.046077 -1.91810 -2.30898 R

499          10   8.2796 0.056437   1.72037   2.07256 R

R denotes an observation with a large standardized residual.

X denotes an observation whose X value gives it large leverage.

Normplot of Residuals for Hemoglobin

Residual Histogram for Hemoglobin

Response: Glucose           Model: carb_intake


Solutions

Expert Solution

Ans 1 ) the value of R 2 = 0.53 so r = 0.728 ,so there is strong relationship between the variables .

Ans 2) yes there are extreme values that might skew results which are given below in results denoted by R .

Ans 3 ) the regression equations generated by the software is

Hemoglobin = 4.44742 + 0.0241019 Glucose

Ans 4 ) Since the p v alue of F stat is less than 0.05 so we conclude that this model is significaant and used for further analysis , also the p value of explanatory variable Glucose is also less than 0.05 so it is also significant and used for predicting the Hemoglobin for individuals.

a.            Response: Hemoglobin Model: Glucoseb.           

General Regression Analysis: Hemoglobin versus Glucose

Regression Equation

Hemoglobin = 4.44742 + 0.0241019 Glucose

Coefficients

Term         Coef   SE Coef        T      P

Constant 4.44742 0.124943 35.5957 0.000

Glucose   0.02410 0.001017 23.6982 0.000

Summary of Model

S = 0.831988     R-Sq = 53.00%        R-Sq(adj) = 52.91%

PRESS = 348.310 R-Sq(pred) = 52.51%

Analysis of Variance

Source          DF   Seq SS   Adj SS   Adj MS        F          P

Regression       1 388.744 388.744 388.744 561.603 0.0000000

Glucose        1 388.744 388.744 388.744 561.603 0.0000000

Error          498 344.718 344.718    0.692

Lack-of-Fit 135 167.864 167.864    1.243    2.552 0.0000000

Pure Error   363 176.854 176.854    0.487

Total          499 733.462

Fits and Diagnostics for Unusual Observations

Obs Hemoglobin      Fit    SE Fit Residual St Resid

14          12 10.0150 0.121499   1.98503   2.41175 R X

17           6   7.7976 0.043273 -1.79759 -2.16352 R

22          12   9.6775 0.108033   2.32246   2.81529 R X

55          12   9.3883 0.096666   2.61168   3.16049 R X

74           6   7.7735 0.042763 -1.77349 -2.13445 R

84          11   9.5088 0.101378   1.49117   1.80576     X

88           6   7.8699 0.044908 -1.86990 -2.25078 R

99          11   8.3278 0.057982   2.67217   3.21961 R

133           6   7.7976 0.043273 -1.79759 -2.16352 R

138           6   7.8217 0.043801 -1.82169 -2.19261 R

142          10   8.1109 0.051299   1.88909   2.27490 R

152          10   7.9904 0.047940   2.00959   2.41943 R

159           6   7.8940 0.045485 -1.89400 -2.27988 R

161          11   8.5447 0.065267   2.45525   2.96019 R

165          6   7.8699 0.044908 -1.86990 -2.25078 R

173           6   7.7012 0.041344 -1.70118 -2.04725 R

189           6   7.8217 0.043801 -1.82169 -2.19261 R

192          10   9.7739 0.111861   0.22605   0.27419     X

202          10   8.0145 0.048588   1.98549   2.39052 R

218          10   8.1109 0.051299   1.88909   2.27490 R

223          12   9.7739 0.111861   2.22605   2.70010 R X

229           6   7.8458 0.044346 -1.84579 -2.22169 R

237          11   9.2196 0.090137   1.78040   2.15260 R

241          10   8.2073 0.054180   1.79268   2.15927 R

243          11   9.2196 0.090137   1.78040   2.15260 R

278          10   8.0627 0.049921   1.93729   2.33271 R

282           6   7.8458 0.044346 -1.84579 -2.22169 R

312           6   7.7012 0.041344 -1.70118 -2.04725 R

321          12 12.1600 0.209508 -0.16004 -0.19876     X

368          12   9.5811 0.104223   2.41887   2.93042 R X

375          11   8.9786 0.080983   2.02142   2.44121 R

385          11 10.1837 0.128295   0.81632   0.99305     X

470           6   7.8940 0.045485 -1.89400 -2.27988 R

471           6   7.9181 0.046077 -1.91810 -2.30898 R

475           6   7.7735 0.042763 -1.77349 -2.13445 R

483           6   7.9181 0.046077 -1.91810 -2.30898 R

499          10   8.2796 0.056437   1.72037   2.07256 R

R denotes an observation with a large standardized residual.

X denotes an observation whose X value gives it large leverage.

Normplot of Residuals for Hemoglobin

Residual Histogram for Hemoglobin

Response: Glucose           Model: carb_intake


Related Solutions

I am so lost on this. I am making a B in this class but I...
I am so lost on this. I am making a B in this class but I can not seem to get this project completed. Please help. ACC-120 Project – Financial Accounting This assignment supports the following outcomes: ·          Prepare journal and ledger entries for a service or merchandising business. ·          Prepare year-end statements for a service or merchandising business. ·          Report cost decisions using accounting principles and financial statement analysis. ·          Evaluate how knowledge, skills, and attitudes learned in this...
What are the top four advantages to activity based costing? I am looking for an expert...
What are the top four advantages to activity based costing? I am looking for an expert solution to Management Accounting by Atkinson , Kaplan, Matsumara, Young. Chapter 5 -31 a - d.
I am very lost on this. If there is an Excel formula I could use, that...
I am very lost on this. If there is an Excel formula I could use, that would help tremendously. Thank you... Create confidence intervals related to the interval and ratio-level data you collected. 1. What is the best estimate of the population mean 2. Develop a 95% confidence interval for the population mean. Develop a 90% confidence interval for the population mean. Develop a 98% confidence interval for the population mean. 3. Interpret the confidence interval. Create an individual Excel...
Does anyone know how to solve this question? I am so lost. Thank you! You are...
Does anyone know how to solve this question? I am so lost. Thank you! You are studying the source of new virus that has recently infected humans. You suspect that the virus was transferred from other primates (they exhibit a similar infection), specifically chimpanzees, gorillas, or orangutans. You sample blood from several infected humans and sequence some viral genes. You then build a phylogenetic tree with the human sequences and all the known strains from each primate. Draw a hypothetical...
One part of this question I am getting wrong. I'm assuming it's the test statistic? I...
One part of this question I am getting wrong. I'm assuming it's the test statistic? I got 1 for Question C, and I got 5.432 for question b, and I got B for question C. An undergraduate student performed a survey on the perceived physical and mental health of UBC students for her term project. She collected information by asking students whether they are satisfied with their physical and mental health status. 129 male and 157 female UBC students were...
I am having an issue with the code. The issue I am having removing the part...
I am having an issue with the code. The issue I am having removing the part when it asks the tuter if he would like to do teach more. I want the program to stop when the tuter reaches 40 hours. I believe the issue I am having is coming from the driver. Source Code: Person .java File: public abstract class Person { private String name; /** * Constructor * @param name */ public Person(String name) { super(); this.name =...
I have to complete Form 1040, and Schedules 1, A, and B. I am fairly lost...
I have to complete Form 1040, and Schedules 1, A, and B. I am fairly lost at this moment, so anything can help Martin S. Albert (Social Security number 111-11-1111) is 39 years old and is married to Michele R. Albert (Social Security number 123-45-6789). The Alberts live at 512 Ferry Road, Newport News, VA 23601. They file a joint return and have two dependent children, Charlene, age 17, and Jordan, age 18. Charlene’s Social Security number is 123-45-6788, and...
I am getting confused on finding the ethical challanges to this question. I am understanding but...
I am getting confused on finding the ethical challanges to this question. I am understanding but second guessing my answers when it come to the elements and the Ethical Code Standards. 1. Identify an ethical challenge for each element (a-d) of Dr Lux advertising plan. Which General Principles and Ethical Code Standards best help understand why these elements may create ethical problems? Explain why. Case 5. Web-Based Advertising. Dr. Lux, an applied developmental psycholgoist, has created his own community consulation...
Please, this is the fifth time I am posting this question, all the answers I am...
Please, this is the fifth time I am posting this question, all the answers I am getting are inaccurate because the experts are not putting all value into account like the loan interest rate, tax rate, depreciation, annual cash outflows, salvage value, annual cash inflows, and discount rate. please also support the answer with a full interpretation and the step by step approach in solving the answer. thank you:) In this paper, please discuss the following case study. In doing...
I am reposting the question because I am looking for how each correlation and causation applies...
I am reposting the question because I am looking for how each correlation and causation applies in healthcare operations management. Please provide an example of correlation and an example of causation as it relates to healthcare operations management and then explain how these concepts are important in identifying and prioritizing operational improvement opportunities.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT