In: Statistics and Probability
this is a four part question and I am lost: the question is at the top and the data follows:
a. Response: Hemoglobin Model: Glucoseb.
General Regression Analysis: Hemoglobin versus Glucose
Regression Equation
Hemoglobin = 4.44742 + 0.0241019 Glucose
Coefficients
Term Coef SE Coef T P
Constant 4.44742 0.124943 35.5957 0.000
Glucose 0.02410 0.001017 23.6982 0.000
Summary of Model
S = 0.831988 R-Sq = 53.00% R-Sq(adj) = 52.91%
PRESS = 348.310 R-Sq(pred) = 52.51%
Analysis of Variance
Source DF Seq SS Adj SS Adj MS F P
Regression 1 388.744 388.744 388.744 561.603 0.0000000
Glucose 1 388.744 388.744 388.744 561.603 0.0000000
Error 498 344.718 344.718 0.692
Lack-of-Fit 135 167.864 167.864 1.243 2.552 0.0000000
Pure Error 363 176.854 176.854 0.487
Total 499 733.462
Fits and Diagnostics for Unusual Observations
Obs Hemoglobin Fit SE Fit Residual St Resid
14 12 10.0150 0.121499 1.98503 2.41175 R X
17 6 7.7976 0.043273 -1.79759 -2.16352 R
22 12 9.6775 0.108033 2.32246 2.81529 R X
55 12 9.3883 0.096666 2.61168 3.16049 R X
74 6 7.7735 0.042763 -1.77349 -2.13445 R
84 11 9.5088 0.101378 1.49117 1.80576 X
88 6 7.8699 0.044908 -1.86990 -2.25078 R
99 11 8.3278 0.057982 2.67217 3.21961 R
133 6 7.7976 0.043273 -1.79759 -2.16352 R
138 6 7.8217 0.043801 -1.82169 -2.19261 R
142 10 8.1109 0.051299 1.88909 2.27490 R
152 10 7.9904 0.047940 2.00959 2.41943 R
159 6 7.8940 0.045485 -1.89400 -2.27988 R
161 11 8.5447 0.065267 2.45525 2.96019 R
165 6 7.8699 0.044908 -1.86990 -2.25078 R
173 6 7.7012 0.041344 -1.70118 -2.04725 R
189 6 7.8217 0.043801 -1.82169 -2.19261 R
192 10 9.7739 0.111861 0.22605 0.27419 X
202 10 8.0145 0.048588 1.98549 2.39052 R
218 10 8.1109 0.051299 1.88909 2.27490 R
223 12 9.7739 0.111861 2.22605 2.70010 R X
229 6 7.8458 0.044346 -1.84579 -2.22169 R
237 11 9.2196 0.090137 1.78040 2.15260 R
241 10 8.2073 0.054180 1.79268 2.15927 R
243 11 9.2196 0.090137 1.78040 2.15260 R
278 10 8.0627 0.049921 1.93729 2.33271 R
282 6 7.8458 0.044346 -1.84579 -2.22169 R
312 6 7.7012 0.041344 -1.70118 -2.04725 R
321 12 12.1600 0.209508 -0.16004 -0.19876 X
368 12 9.5811 0.104223 2.41887 2.93042 R X
375 11 8.9786 0.080983 2.02142 2.44121 R
385 11 10.1837 0.128295 0.81632 0.99305 X
470 6 7.8940 0.045485 -1.89400 -2.27988 R
471 6 7.9181 0.046077 -1.91810 -2.30898 R
475 6 7.7735 0.042763 -1.77349 -2.13445 R
483 6 7.9181 0.046077 -1.91810 -2.30898 R
499 10 8.2796 0.056437 1.72037 2.07256 R
R denotes an observation with a large standardized residual.
X denotes an observation whose X value gives it large leverage.
Normplot of Residuals for Hemoglobin
Residual Histogram for Hemoglobin
Response: Glucose Model: carb_intake
Ans 1 ) the value of R 2 = 0.53 so r = 0.728 ,so there is strong relationship between the variables .
Ans 2) yes there are extreme values that might skew results which are given below in results denoted by R .
Ans 3 ) the regression equations generated by the software is
Hemoglobin = 4.44742 + 0.0241019 Glucose
Ans 4 ) Since the p v alue of F stat is less than 0.05 so we conclude that this model is significaant and used for further analysis , also the p value of explanatory variable Glucose is also less than 0.05 so it is also significant and used for predicting the Hemoglobin for individuals.
a. Response: Hemoglobin Model: Glucoseb.
General Regression Analysis: Hemoglobin versus Glucose
Regression Equation
Hemoglobin = 4.44742 + 0.0241019 Glucose
Coefficients
Term Coef SE Coef T P
Constant 4.44742 0.124943 35.5957 0.000
Glucose 0.02410 0.001017 23.6982 0.000
Summary of Model
S = 0.831988 R-Sq = 53.00% R-Sq(adj) = 52.91%
PRESS = 348.310 R-Sq(pred) = 52.51%
Analysis of Variance
Source DF Seq SS Adj SS Adj MS F P
Regression 1 388.744 388.744 388.744 561.603 0.0000000
Glucose 1 388.744 388.744 388.744 561.603 0.0000000
Error 498 344.718 344.718 0.692
Lack-of-Fit 135 167.864 167.864 1.243 2.552 0.0000000
Pure Error 363 176.854 176.854 0.487
Total 499 733.462
Fits and Diagnostics for Unusual Observations
Obs Hemoglobin Fit SE Fit Residual St Resid
14 12 10.0150 0.121499 1.98503 2.41175 R X
17 6 7.7976 0.043273 -1.79759 -2.16352 R
22 12 9.6775 0.108033 2.32246 2.81529 R X
55 12 9.3883 0.096666 2.61168 3.16049 R X
74 6 7.7735 0.042763 -1.77349 -2.13445 R
84 11 9.5088 0.101378 1.49117 1.80576 X
88 6 7.8699 0.044908 -1.86990 -2.25078 R
99 11 8.3278 0.057982 2.67217 3.21961 R
133 6 7.7976 0.043273 -1.79759 -2.16352 R
138 6 7.8217 0.043801 -1.82169 -2.19261 R
142 10 8.1109 0.051299 1.88909 2.27490 R
152 10 7.9904 0.047940 2.00959 2.41943 R
159 6 7.8940 0.045485 -1.89400 -2.27988 R
161 11 8.5447 0.065267 2.45525 2.96019 R
165 6 7.8699 0.044908 -1.86990 -2.25078 R
173 6 7.7012 0.041344 -1.70118 -2.04725 R
189 6 7.8217 0.043801 -1.82169 -2.19261 R
192 10 9.7739 0.111861 0.22605 0.27419 X
202 10 8.0145 0.048588 1.98549 2.39052 R
218 10 8.1109 0.051299 1.88909 2.27490 R
223 12 9.7739 0.111861 2.22605 2.70010 R X
229 6 7.8458 0.044346 -1.84579 -2.22169 R
237 11 9.2196 0.090137 1.78040 2.15260 R
241 10 8.2073 0.054180 1.79268 2.15927 R
243 11 9.2196 0.090137 1.78040 2.15260 R
278 10 8.0627 0.049921 1.93729 2.33271 R
282 6 7.8458 0.044346 -1.84579 -2.22169 R
312 6 7.7012 0.041344 -1.70118 -2.04725 R
321 12 12.1600 0.209508 -0.16004 -0.19876 X
368 12 9.5811 0.104223 2.41887 2.93042 R X
375 11 8.9786 0.080983 2.02142 2.44121 R
385 11 10.1837 0.128295 0.81632 0.99305 X
470 6 7.8940 0.045485 -1.89400 -2.27988 R
471 6 7.9181 0.046077 -1.91810 -2.30898 R
475 6 7.7735 0.042763 -1.77349 -2.13445 R
483 6 7.9181 0.046077 -1.91810 -2.30898 R
499 10 8.2796 0.056437 1.72037 2.07256 R
R denotes an observation with a large standardized residual.
X denotes an observation whose X value gives it large leverage.
Normplot of Residuals for Hemoglobin
Residual Histogram for Hemoglobin
Response: Glucose Model: carb_intake