In: Finance
Explain the concept of Bond Duration, what does it measure, how is it calculated, how is it used, and what inputs impact its calculation? (finance question)
What Is Duration? What does it measure?
Duration is a measure of the sensitivity of the price of a bond or other debt instrument to a change in interest rates. A bond's duration is easily confused with its term or time to maturity because they are both measured in years. However, a bond's term is a linear measure of the years until repayment of principal is due; it does not change with the interest rate environment. Duration, on the other hand is non-linear and accelerates as time to maturity lessens.
How Duration Works?
Duration measures how long it takes, in years, for an investor to be repaid the bond’s price by the bond’s total cash flows. At the same time, duration is a measure of sensitivity of a bond's or fixed income portfolio's price to changes in interest rates. In general, the higher the duration, the more a bond's price will drop as interest rates rise (and the greater the interest rate risk). As a general rule, for every 1% change in interest rates (increase or decrease), a bond’s price will change approximately 1% in the opposite direction, for every year of duration. If a bond has a duration of five years and interest rates increase 1%, the bond’s price will drop by approximately 5% (1% X 5 years). Likewise, if interest rates fall by 1%, the same bond’s price will increase by about 5% (1% X 5 years).
input factors in bond duration calculation-
Certain factors can affect a bond’s duration, including:
The duration of a bond in practice can refer to two different things. The Macaulay duration is the weighted average time until all the bond's cash flows are paid. By accounting for the present value of future bond payments, the Macaulay duration helps an investor evaluate and compare bonds independent of their term or time to maturity.
The second type of duration is called "modified duration" and, unlike Macaulay duration, is not measured in years. Modified duration measures the expected change in a bond's price to a 1% change in interest rates. In order to understand modified duration, keep in mind that bond prices are said to have an inverse relationship with interest rates. Therefore, rising interest rates indicate that bond prices are likely to fall, while declining interest rates indicate that bond prices are likely to rise
types of duration
Macaulay Duration
Macaulay duration finds the present value of a bond's future coupon payments and maturity value. Fortunately for investors, this measure is a standard data point in most bond searching and analysis software tools. Because Macaulay duration is a partial function of the time to maturity, the greater the duration, the greater the interest-rate risk or reward for bond prices.
Macaulay duration can be calculated manually as follows:
Modified Duration
The modified duration of a bond helps investors understand how much a bond's price will rise or fall if the YTM rises or falls by 1%. This is an important number if an investor is worried that interest rates will be changing in the short term. The modified duration of a bond with semi-annual coupon payments can be found with the following formula:
Usefulness of Duration (How it is used)?
Investors need to be aware of two main risks that can affect a bond's investment value: credit risk (default) and interest rate risk (interest rate fluctuations). Duration is used to quantify the potential impact these factors will have on a bond's price because both factors will affect a bond's expected YTM.
For example, if a company begins to struggle and its credit quality declines, investors will require a greater reward or YTM to own the bonds. In order to raise the YTM of an existing bond, its price must fall. The same factors apply if interest rates are rising and competitive bonds are issued with a higher YTM.
Duration Summary
A bond's duration can be split into two different features. The Macauley duration is the weighted average time to receive all the bond's cash flows and is expressed in years. A bond's modified duration converts the Macauley duration into an estimate of how much the bond's price will rise or fall with a 1% change in the yield to maturity. A bond with a long time to maturity will have larger duration than a short-term bond. As a bond's duration rises, its interest rate risk also rises because the impact of a change in the interest rate environment is larger than it would be for a bond with a smaller duration.