In: Computer Science
Use boolean algebra to prove that:
(A^- *B*C^-) + (A^- *B*C) + (A* B^- *C) + (A*B* C^-) + (A*B*C)= (A+B)*(B+C)
A^- is same as "not A"
please show steps to getting the left side to equal the right side, use boolean algebra properties such as distributive, absorption,etc
(A^- *B*C^-) + (A^- *B*C) + (A* B^- *C) + (A*B* C^-) + (A*B*C)
let A^- = A'
A'BC' + A'BC + AB'C + ABC' + ABC =
= A'B(C'+C) + AB'C + AB(C+C') since C+C' = 1. Boolean Complement Rule
= A'B + AB'C + AB
= B(A'+A) + AB'C since A'+A = 1 Boolean Complement Rule
= B + AB'C using rule A+BC = (A+B) (A+C)
= (B+A)(B+B'C) using rule A+BC = (A+B) (A+C)
= (B+A)(B+B')(B+C) since B+B' = 1 Boolean Complement Rule
= (B+A)(B+C)
= (A+B)(B+C)