In: Computer Science
computer organazation , Boolean algebra
1. Show the Boolean algebra reduction to minimal form for each. Show each step, and cite the rule number which allows it.
a . (AB)’ (A’ + B) (B’ + B)
b . A’(A+B) + (B + A)(A + B’)
a. (AB)’ (A’ + B) (B’ + B) = (AB)’ (A’ + B) (1) = (AB)’ (A’ + B) = (A' + B') (A’ + B) = A'A' + B'A' + A'B + B'B = A' + B'A' + A'B + 0 = A' + B'A' + A'B = A' (1 + B' + B) = A' (1 + 1) = A' b. A’(A+B) + (B + A)(A + B’) = (A’A+A'B) + (B + A)(A + B’) = (0+A'B) + (B + A)(A + B’) = A'B + (B + A)(A + B’) = A'B + (BA + AA + BA + BB') = A'B + (BA + A + BA + BB') = A'B + (BA + A + BA + 0) = A'B + (BA + A + BA) = A'B + (BA + A) = A'B + A(B + 1) = A'B + A(1) = A'B + A