In: Computer Science
Simplify the equation using Boolean algebra properties.
F = xy + xy’z + x’yz
F = xy + xy'z + x'yz = xy(z+z') + xy'z + x'yz = xyz + xyz' + xy'z + x'yz = (xyz + xyz + xyz) + xyz' + xy'z + x'yz = (xyz + xyz') + (xyz + xy'z) + (xyz + x'yz) = (xy(z+z')) + (xz(y+y')) + (yz(x+x')) = (xy(1)) + (xz(1)) + (yz(1)) = xy + xz + yz Answer: xy + xz + yz