Question

In: Physics

(1A) Light of wavelength 534.0 nm illuminates a double slit, and the interference pattern is observed...

(1A) Light of wavelength 534.0 nm illuminates a double slit, and the interference pattern is observed on a screen. At the position of the m = 82.0 bright fringe, how much farther is it to the more distant slit than to the nearer slit?

(1B) Light from a sodium lamp of wavelength 446.0 nm illuminates two narrow slits. The fringe spacing on a screen 137.8 cm behind the slits is 6.21 mm. What is the spacing between the two slits?

(1C) Light is incident normal to the surface of a 1.07 cm layer of water that lies on top of a flat Lucite plate with a thickness of 0.560 cm. How much more time is required for light to pass through this double layer than is required to traverse the same distance in air? (nLucite = 1.61, nwater = 1.333)

Solutions

Expert Solution

1A) The wavelength = 534.0 nm , The order of bright fringe m = 82.0

The path difference for mth bright fringe is given by

putting the value we get

path diff = 534.0 X 82 = 43788 nm = 4.38 X 10-5 m

1B) The wavelength = 446.0 nm.

The distance between the screen and slit D is 137 cm

The fringe width is = 6.21 mm

the fringe width is given by

where the slit separation is d

putting the values in the above eqn we get

d= 9.84 X 10-5 m or 0.0984 mm

1C) The refractive index of water

the speed of light in water is

where c is the speed of light in vaccuam c = 3 X 10 8 m/s

putting the values we have v = 2.25 X 10 8 m/s  

The water is 1.07 cm thick .

The time taken to pass through water is T1

putting the values we get

T1 = 4.75 x 10 -11 s

The refractive index of nLucite  

the speed of light in water is

where c is the speed of light in vaccuam c = 3 X 10 8 m/s

putting the values we have v = 1.875 X 10 8 m/s  

The nLucite is 0.560 cm thick .

The time taken to pass through water is T2

putting the values we get

T2 = 2.7 x 10 -11 s

hence the total time required to pass the double layer is

T = T1+ T2 = 7.45 X 10 -11 s


Related Solutions

An interference pattern is produced by light with a wavelength 600 nm from a distant source...
An interference pattern is produced by light with a wavelength 600 nm from a distant source incident on two identical parallel slits separated by a distance (between centers) of 0.560 mm . If the slits are very narrow, what would be the angular position of the first-order, two-slit, interference maxima? What would be the angular position of the second-order, two-slit, interference maxima in this case? Let the slits have a width 0.280 mm . In terms of the intensity I0...
Question: Light, with a wavelength of 500 nm in air, strikes directly on a double slit,...
Question: Light, with a wavelength of 500 nm in air, strikes directly on a double slit, spaced 440 micrometer apart. The resulting interference pattern is observed on a screen that is 2.0 meters away. Afterwards, the double slit apparatus is then submerged into oil, which has an index of refraction of 1.58.  Assume that the diffraction effects are negligible. a)Calculate the distance between the first two adjacent bright fringes on the screen, when set up in air. b)Determine the frequency of...
In a Young's double-slit experiment the wavelength of light used is 462 nm (in vacuum), and...
In a Young's double-slit experiment the wavelength of light used is 462 nm (in vacuum), and the separation between the slits is 2.1 × 10-6 m. Determine the angle that locates (a) the dark fringe for which m = 0, (b) the bright fringe for which m = 1, (c) the dark fringe for which m = 1, and (d) the bright fringe for which m = 2.
In a Young's double-slit experiment the wavelength of light used is 469 nm (in vacuum), and...
In a Young's double-slit experiment the wavelength of light used is 469 nm (in vacuum), and the separation between the slits is 2.1 × 10-6 m. Determine the angle that locates (a) the dark fringe for which m = 0, (b) the bright fringe for which m = 1, (c) the dark fringe for which m = 1, and (d) the bright fringe for which m = 2.
1) A 600 nm laser illuminates a double slit apparatus with a slit separation distance of...
1) A 600 nm laser illuminates a double slit apparatus with a slit separation distance of 3.55 μm. The viewing screen is 1.50 meters behind the double slits. What is the distance (in meters) from the central bright fringe to the 3nd dark fringe? 2) A 600 nm laser illuminates a double slit apparatus with a slit separation distance of 3.55 μm. The viewing screen is 1.50 meters behind the double slits. What is the distance (in cm) between the...
1) A 680 nm laser illuminates a double slit apparatus with a slit separation distance of...
1) A 680 nm laser illuminates a double slit apparatus with a slit separation distance of 7.83 μm. On the viewing screen, you measure the distance from the central bright fringe to the 2nd bright fringe to be 88.2 cm. How far away (in meters) is the viewing screen from the double slits?   2) A 600 nm laser illuminates a double slit apparatus with a slit separation distance of 3.55 μm. The viewing screen is 1.50 meters behind the double...
Blue light of wavelength 470 nm passes through an interference grating with a slit spacing of0.001...
Blue light of wavelength 470 nm passes through an interference grating with a slit spacing of0.001 mm and makes an interference pattern on the wall. How many bright fringes will be seen?
How does the single-slit diffraction pattern look in comparison to the double-slit interference pattern? Is it...
How does the single-slit diffraction pattern look in comparison to the double-slit interference pattern? Is it possible to have a double-slit pattern without the single-slit pattern overlaid?
The figure (Intro 1 figure) shows the interference pattern obtainedin a double-slit experiment with light...
The figure (Intro 1 figure) shows the interference pattern obtained in a double-slit experiment with light of wavelength λ. Part A Identify the fringe or fringes that result from the interference of two waves whose phases differ by exactly 2λ. Enter the letter(s) indicating the fringe(s) in alphabetical order. For example, if you think that fringes A and C are both correct, enter AC. Part B The same double-slit experiment is then immersed in water (with an index of refraction of...
What is the condition for light in order to make interference pattern from Young-double slit? How...
What is the condition for light in order to make interference pattern from Young-double slit? How do you make single source to make a source for young double-slit experiment? What happen if you use electron instead of light, what pattern you expect to see, and why? What are the parameters that can affect the interference pattern (mention at least 3)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT