Question

In: Chemistry

Which UV light hits earth's surface at the greatest intensity?

Which UV light hits earth's surface at the greatest intensity?

Solutions

Expert Solution

The Sun is considered to produces a constant amount of energy. At the surface of the Sun the intensity of the solar radiation is about 6.33×107 W/m2 (note that this is a power, in watts, per unit area in meters).

UV radiation at different wavelengths differs in its effects, and we have to live with the harmful effects as well as the helpful ones. Radiation at the longer UV wavelengths of 320-400 nm, called UV-A, plays a helpful and essential role in formation of Vitamin D by the skin, and plays a harmful role in that it causes sunburn on human skin and cataracts in our eyes. The incoming radiation at shorter wavelengths, 290-320 nm, falls within the UV-B part of the electromagnetic spectrum. (UV-B includes light with wavelengths down to 280 nm, but little to no radiation below 290 nm reaches the Earth’s surface). UV-B causes damage at the molecular level to the fundamental building block of life


Related Solutions

A polarized light wave passes through a polarizing filter which reduced the intensity of the light...
A polarized light wave passes through a polarizing filter which reduced the intensity of the light to 25% of the incident intensity. What would the intensity become if the incident light is unpolarized? PLEASE EXPLAIN :))
The brightness of sunlight at the earth's surface changes over time depending on whether the earth's...
The brightness of sunlight at the earth's surface changes over time depending on whether the earth's atmosphere is more or less clear. Sunlight dimmed between 1960 and 1990. After 1990, air pollution dropped in industrial countries. Did sunlight brighten? Here are data and scatterplot from Boulder, Colorado, averaging over only clear days each year. (Other locations show similar trends.) The response variable is solar radiation in watts per square meter. Year 1992 1993 1994 1995 1996 1997 1998 1999 2000...
What is the energy of a single photon of the UV light that was emitted?
A black light produces UV light with wavelengths below 400 nm. When the chemical quinine (which is in tonic water) is exposed to light with a wavelength of 383 nm, it becomes excited and then re-emits light at 450. nm. Is the re-emitted light lower or higher energy than the light that was absorbed? Is it lower or higher frequency? Answer this question without a calculation. What is the energy of a single photon of the UV light that was...
Which of the following statements regarding optical traps is/are true? A light source with an intensity...
Which of the following statements regarding optical traps is/are true? A light source with an intensity characterized by a uniform cross-section is required. The name is actually a misnomer because light is not actually being used to generate the trapping forces. Changes in momentum of the photons result in changes in momentum of a dielectric sphere when it is in the trap. Optical traps typically generate forces on the order of nanoNewtons.
Explain the reasons for the number of intensity maxima and intensity minima seen in light polarization...
Explain the reasons for the number of intensity maxima and intensity minima seen in light polarization graphs. Show figures with the orientation of the electric field and the axis of transmission of the polarizer.
A beam of light is a mixture of unpolarized light with intensity Ia and linearly polarized...
A beam of light is a mixture of unpolarized light with intensity Ia and linearly polarized light with intensity Ib. The polarization direction for the polarized light is vertical. When this mixed beam of light is passed through a polarizer that is vertical, the transmitted intensity is 16.8 W/m2; when the polarizer is at an angle of 55.0° with the vertical, the transmitted intensity is 8.68 W/m2. (a) Is Ia greater than, less than, or equal to Ib? Explain. (b)...
questions 1) : How to control the polarization of light and intensity and phase of light...
questions 1) : How to control the polarization of light and intensity and phase of light ???? questions 2) : How to control the polarization, intensity, phase of liquid crystal ???
Effect of intensity on photoelectrons What effect does changing the light intensity have on the maximum...
Effect of intensity on photoelectrons What effect does changing the light intensity have on the maximum energy of the photoelectrons and what evidence supports your answer? What effect does changing the light intensity have on the charging time and why? Effect of frequency on photoelectrons What effect does changing the frequency of the light have on the maximum energy of the photoelectrons and what evidence supports your answer? Are any of the frequencies used below the threshold (work function) of...
On a clear day the electric field in the atmosphere near the earth's surface is 100...
On a clear day the electric field in the atmosphere near the earth's surface is 100 N/C, directed vertically downward. (a) If we adopt the convention that the potential at the earth's surface is 0, what is the potential 492 m above the surface? (b) What is the potential at the top of Pike's Peak, 14,110 ft above sea level? (Hint: Do not assume that the surface in part (a) is at sea level.) Explain.
The epicenter of an earthquake is the point on Earth's surface directly above the earthquakes origin....
The epicenter of an earthquake is the point on Earth's surface directly above the earthquakes origin. A seismograph can be used to determine the distance to the epicenter of an earthquake. Seismographs are needed in three different places to locate an earthquake's epicenter. Find the location of the earthquake's epicenter if it is 3 miles away from A(2,3), 4 miles away from B(-5,3), and 5 miles away from C(-1,-2).
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT