Question

In: Mechanical Engineering

One integrated circuit design calls for the diffusion of arsenic into silicon wafers; the background concentration...

One integrated circuit design calls for the diffusion of arsenic into silicon wafers; the background concentration of As in Si is 2.5 × 1020 atoms/m3. The predeposition heat treatment is to be conducted at 1000°C for 45 minutes, with a constant surface concentration of 8 × 1026 As atoms/m3. At a drive-in temperature of 1100°C, determine the diffusion time required for a junction depth of 1.2 μm. For this system, values of Qd and D0 are 4.10 eV and 2.29 × 10−3 m2/s, respectively. (The answer is NOT 49.12hours)

Solutions

Expert Solution


Related Solutions

Diffusion is a key element of integrated circuit fabrication. Describe the two basic heat treatments that...
Diffusion is a key element of integrated circuit fabrication. Describe the two basic heat treatments that are used to diffuse impurities into silicon during this fabrication process.
VLSI circuit design integrated ciruit : fabrication and manufacturing in industry
VLSI circuit design integrated ciruit : fabrication and manufacturing in industry
An n-type silicon wafer undergoes a pre-deposition diffusion process with a constant surface concentration of boride...
An n-type silicon wafer undergoes a pre-deposition diffusion process with a constant surface concentration of boride gas; the resulting concentration of boron in silicon at the surface is estimated to be 1x1018 atoms cm-3. The background concentration of trace boron atoms in the silicon wafer is estimated to be 1x1014 cm-3. (A) Estimate the depth of the p-n junction below the surface when the background doping concentration of the n-type impurity is 3.45 x1016 cm-3; assume the diffusion process proceeds...
An n-type silicon wafer undergoes a pre-deposition diffusion process with a constant surface concentration of boride...
An n-type silicon wafer undergoes a pre-deposition diffusion process with a constant surface concentration of boride gas; the resulting concentration of boron in silicon at the surface is estimated to be 1x1018 atoms cm-3. The background concentration of trace boron atoms in the silicon wafer is estimated to be 1x1014 cm-3. (A) Estimate the depth of the p-n junction below the surface when the background doping concentration of the n-type impurity is 3.45 x1016 cm-3; assume the diffusion process proceeds...
Explain the digital integrated-circuit design process and how it is applied to micro architectures, available design...
Explain the digital integrated-circuit design process and how it is applied to micro architectures, available design methods and tools?
Q1.An n-type silicon wafer undergoes a pre-deposition diffusion process with a constant surface concentration of boride...
Q1.An n-type silicon wafer undergoes a pre-deposition diffusion process with a constant surface concentration of boride gas; the resulting concentration of boron in silicon at the surface is estimated to be 1x10^18 atoms cm-3 . The background concentration of trace boron atoms in the silicon wafer is estimated to be 1x10^14 cm-3 .(A) Estimate the depth of the p-n junction below the surface when the background doping concentration of the n-type impurity is 3.45 x10^16 cm-3 ; assume the diffusion...
In VHDL with Xilinx Vivado, design a PWM circuit as described in the Background and Theory...
In VHDL with Xilinx Vivado, design a PWM circuit as described in the Background and Theory section. The central part will be 0 to 9 counter, with an integrated comparator. VHDL supports < and > as comparisons. You will just need to integrate a PWM output into the counter. For simulation, use a 10 kHz clock to the counter, which will result in a 1 kHz PWM signal. Simulate a 0%, 30%, 70% and 100% duty cycle.
Two wafers of extrinsic Si have the same dopant concentration, but one wafer is n-type and...
Two wafers of extrinsic Si have the same dopant concentration, but one wafer is n-type and the other is p-type. The resistivities of the two wafers are measured under the same test conditions and found to be different. Which one has the larger resistivity? Explain.
Design on of these 3 circuits : Direction circuit ,Pressure circuit ,sequentional circuit one of these*
Design on of these 3 circuits : Direction circuit ,Pressure circuit ,sequentional circuit one of these*
need it as copy text Explain the digital integrated-circuit design process and how it is applied...
need it as copy text Explain the digital integrated-circuit design process and how it is applied to micro architectures, available design methods and tools?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT