Question

In: Physics

Kinetic energy is conserved in an elastic collision by definition. Show, using the Galilean transformation equations,...

Kinetic energy is conserved in an elastic collision by definition. Show, using the Galilean transformation equations, that if a collision is elastic in one inertial frame it should be elastic in all inertial frames

Solutions

Expert Solution


Related Solutions

1.What is the unit for kinetic energy? 2.A collision in which kinetic energy is conserved is...
1.What is the unit for kinetic energy? 2.A collision in which kinetic energy is conserved is called what? 3. It takes no work to hold a cheerleader in the air, as shown here. If no work is done by the cheerleaders, why do they eventually tire? A.The concept of work, as it apples in physics, does not apply to any process that involves people. B.Their bodies expend chemical energy as their muscles function; this is "hard work," but not the...
Elastic Collision lab. I'm trying to calculate velocity, momentum, and kinetic energy in an elastic collision....
Elastic Collision lab. I'm trying to calculate velocity, momentum, and kinetic energy in an elastic collision. The data I have is this. I tried using these numbers to calculate velocity and momentum but the results show momentum is not conserved as it should be. Is that just error from measurements or am I missing something? Car A Car B length=10cm length=10cm weight=189.6g weight=299.7g initial=0.153s initial=0s final=-0.705s final=47.2s
1. Show that the Kinetic Energy and the Momentum are conserved in this system. (Remember that...
1. Show that the Kinetic Energy and the Momentum are conserved in this system. (Remember that momentum is a vector, so you need to show the conservation of the momentum in x and y directions separately.) Data: Before the collision: m1= 1kg v1x =1 m/s v1y=0 m/s m2=1kg v2x=-1m/s v2y=0 m/s After the collision: m1= 1kg v1x =-0.778 m/s v1y=-0.629 m/s m2=1kg v2x= 0.778 m/s v2y=0.629 m/s 2. From the data, calculate the direction(angles) of the final velocities of the...
Using the elastic collision equations show the detailed steps in deriving equation (1) Using the plastic...
Using the elastic collision equations show the detailed steps in deriving equation (1) Using the plastic collision equations show the detailed steps in deriving equation (2) (1) v'B = (mA / mA + mB + m) * vA (2) v' = (mA / mA + mB +m) * vA m is mass attached to mB use elastic collision equations to algebraically derive equation 1, and use plastic collision equations to algebraically derive equation 2 m is a mass attached to...
Demonstrate and derivate how the energy and angular momentum are conserved in Galilean Transformations.
Demonstrate and derivate how the energy and angular momentum are conserved in Galilean Transformations.
How does the total Kinetic Energy before the collision compare to the total Kinetic Energy after...
How does the total Kinetic Energy before the collision compare to the total Kinetic Energy after the collision, for the case of inelastic collisions? How does it compare for elastic collisions?
the total momentum (linear momentum) is conserved in any collision, not its _________ energy, but its...
the total momentum (linear momentum) is conserved in any collision, not its _________ energy, but its total energy is conserved. In the ballistic pendulum shown in the conservation of linear momentum lesson, if the mass of a bullet is m1 = 10 g and the mass of the block is 8.0 kg and the height that both reach is 5.0 cm, the initial speed of the bullet is _______ m / s. In the Newton pendulum or Newton's cradle the...
Derive the final velocity equations in a 1D elastic two body collision.
Derive the final velocity equations in a 1D elastic two body collision.
Name and explain three ways in which momentum and kinetic energy are not conserved when they...
Name and explain three ways in which momentum and kinetic energy are not conserved when they should be.
Name and explain 3 ways in which momentum and kinetic energy are not conserved when they...
Name and explain 3 ways in which momentum and kinetic energy are not conserved when they should be
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT