In: Finance
A stock price is currently $80. It is known that at the end of four months it will be either $75 or $88. The risk free rate is 6 percent per annum with continuous compounding. What is the value of a four–month European put option that is currently $1 out-of-the-money? Use no-arbitrage arguments.
European Put option is currently $1 Out-of-the money | |||||||||
that means it is traded at $79 (Spot Price $80 - $1). | |||||||||
Value of Put Option if after 4 months price will be $75 (Pd) | |||||||||
= max ((StrikePrice - Price after 4 months),0) | |||||||||
= max (($79 - $75),0) | |||||||||
= max ($4,0) | |||||||||
= $4 | |||||||||
Value of Put Option if after 4 months price will be $88 (Pu) | |||||||||
= max ((StrikePrice - Price after 4 months),0) | |||||||||
= max (($79 - $88),0) | |||||||||
= max (-$9,0) | |||||||||
= $0 | |||||||||
Let Probability of increase in Price be P | |||||||||
So, | |||||||||
P = (R-d) / (u-d) | |||||||||
Where, | |||||||||
R = Spot Price after 4 months | |||||||||
= Spot Price * e^(6%*4months) | |||||||||
= Spot Price * e^(6%*4/12) | |||||||||
= $80 * e^(0.02) | |||||||||
= $80 * 1.0202 (Where Excel Formula for, e^(0.02) = EXP(0.02)) | |||||||||
= $81.616 | |||||||||
d = Lower Possible Price on Maturity = $75 | |||||||||
u = higher Possible Price on Maturity = $88 | |||||||||
P = (R-d) / (u-d) | |||||||||
= ($81.616 - $75) / ($88 - $75) | |||||||||
= $6.616 / $13 | |||||||||
= 0.50892 | |||||||||
Value of Put Option on expiry | |||||||||
= Probability of Price Increase * Value of option when price increases | |||||||||
+ (1-Probability of Price Incraeses) * Value of option when price decreases | |||||||||
= 0.50892 * 0 + (1-0.50892) * 4 | |||||||||
= 0.50892 * 0 + 0.49108 * 4 | |||||||||
= 0 + 1.9643 | |||||||||
= $1.9643 | |||||||||
Value of Put Option today | |||||||||
= Value of Put Option on Expiry / e^(6%*4months) | |||||||||
= $1.9643 / e^(6%*4/12) | |||||||||
= $1.9643 / e^(0.02) | |||||||||
= $1.9643 / 1.0202 (Where Excel Formula for, e^(0.02) = EXP(0.02)) | |||||||||
= $1.9254 | |||||||||