Question

In: Physics

A conducting sphere is placed within a conducting spherical shell as shown in the figure below....

A conducting sphere is placed within a conducting spherical shell as shown in the figure below. The conductors are in electrostatic equilibrium. The inner sphere has a radius of 1.50 cm, the inner radius of the spherical shell is 2.25 cm, and the outer radius of the shell is 2.75 cm. The inner sphere has a charge of 225 nC, and the spherical shell has zero net charge.

Solutions

Expert Solution

The charge on the conducting sphere is 255nC

also the net charge on the spherical shell is zero.

But to get the charge inside the conducting shell to be zero,the charge on the inner surface of the conducting shell shouldbe

-255nC. For the net charge on the spherical shell to bezero, the charge on the outer surface of the shell must be255nC

Then for the point at 1.75cm, the net charge enclosed by agaussian spherical surface having radius 1.75cm and passing throughthe point will be 255nC

Then Eat1.75cm =(9*109Nm2/C2)(255*10-9C)/(1.75*10-2m)2

      = 7.49*106N/C

For the point at 2.5cm, the net charge enclosed by agaussian spherical surface having radius 2.5cm and passing throughthe point will is 255nC - 255nC = 0C

Then Eat2.5cm = 0

And for the point at 3.4cm, the net charge enclosed by agaussian spherical surface having radius 3.4cm and passing throughthe point will be 255nC

Then Eat3.4cm =(9*109Nm2/C2)(255*10-9C)/(3.4*10-2m)2

      = 1.98*106N/C


Related Solutions

In Figure, a solid sphere of radius a is concentric with a spherical conducting shell of...
In Figure, a solid sphere of radius a is concentric with a spherical conducting shell of inner radius b = 2.00a and outer radius c = 2.40a. The sphere has a net uniform charge q1 (> 0); the shell has a net charge q2 = -q1.What is the magnitude of the electric field at radial distances (a) r = 0, (b) r = a/2.00, (c) r = a, (d) r = 1.50a, (e) r = 2.30a, and (f)r = 3.50a?...
A spherical shell is cut into two halves that remain forming the sphere, but are electrically...
A spherical shell is cut into two halves that remain forming the sphere, but are electrically isolated from each other at a negligible distance. The nortern hemisphere is at potential +V_0 and the southern hemisphere is at potential -V_0. Obtain the potential V (r, θ, ϕ) inside and outside of the sphere.
A positively charged particle is held at the center of a spherical shell. The figure gives...
A positively charged particle is held at the center of a spherical shell. The figure gives the magnitude E of the electric field versus radial distance r. The scale of the vertical axis is set by Es = 8.0
Concentric conducting spherical shells carry charges Q and –Q, respectively (see below). The inner shell has...
Concentric conducting spherical shells carry charges Q and –Q, respectively (see below). The inner shell has negligible thickness. Determine the electric field for (a) r < a; (b) a < r < b; (c) b < r < c; and (d) r > c. Please explained as much as you can, thank you.
A small conducting spherical shell with inner radius a and outer radius b is concentric with...
A small conducting spherical shell with inner radius a and outer radius b is concentric with a larger conducting spherical shell with inner radius c and outer radius d. The inner shell has a total charge of -1q and the outer shell has a total charge of +3q. Select True or False for the following statements. 1. The total charge on the inner surface of the small shell is -4q. 2. The total charge on the outer surface of the...
A small conducting spherical shell with inner radius a and outer radius b is concentric with...
A small conducting spherical shell with inner radius a and outer radius b is concentric with a larger conducting spherical shell with inner radius c and outer radius d. The inner shell has a total charge of -2q and the outer shell has a total charge of +4q. Select True or False for the following statements. The total charge on the inner surface of the small shell is zero. True False  The total charge on the inner surface of the large...
Consider a conducting hollow sphere with radius R that is placed in a homogeneous electric field...
Consider a conducting hollow sphere with radius R that is placed in a homogeneous electric field E_0 = E_0 e_z a) Calculate the electrostatic potential φ_0(r) for the homogeneous electric field E_0= E_0 e_z only and write the result in spherical coordinates. b) Assume that the sphere is grounded i.e. put the potential φ(R)=0 and calculate the electrostatic potential φ(r)=0 inside and outside the sphere. Hint: Consider that the electrostatic potential far away from the sphere should just give rise...
A capacitor is formed from two concentric spherical conducting shells separated by vacuum. The inner sphere...
A capacitor is formed from two concentric spherical conducting shells separated by vacuum. The inner sphere has radius 10.0cm , and the outer sphere has radius 16.0cm . A potential difference of 150V is applied to the capacitor. 1-What is the energy density at r = 10.1cm , just outside the inner sphere? (J/m^3) 2-What is the energy density at r = 15.9cm , just inside the outer sphere?
A conducting spherical shell with inner radius a=0.1 m and outer radius b=0.5 m has a...
A conducting spherical shell with inner radius a=0.1 m and outer radius b=0.5 m has a positive point charge Q=+5 nC located in its center. The total charge on the shell is -3Q and it is insulated from its surroundings. a. Calculate the surface charge density on the surfaces of the shell. b. Calculate the magnitude of the electric field at a radius of 0.01 m, and at a radius of 1.5 m. c. Sketch the electric field lines in...
A non-conducting spherical shell of inner radius R1 and outer radius R2 contains a uniform volume...
A non-conducting spherical shell of inner radius R1 and outer radius R2 contains a uniform volume charge density p through the shell. Use Gauss's Law to derive an equation for the magnitude of the electric field at the following radial distances r from the center of the sphere. Your answer should be in terms of p,R1,R2,r Eo, and pi. a). r < R1 b.) R1 <r<2 c.) r>R2
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT