Question

In: Physics

Concentric conducting spherical shells carry charges Q and –Q, respectively (see below). The inner shell has...

Concentric conducting spherical shells carry charges
Q and –Q, respectively (see below). The inner shell has
negligible thickness. Determine the electric field for (a)
r < a; (b) a < r < b; (c) b < r < c; and (d) r > c.

Please explained as much as you can, thank you.

Solutions

Expert Solution

The inner shell has charge Q and outer shell has charge -Q

This is a case where charge distribution has spherical symmetry , and hence E field is radial. In such cases E can be determined by using Gauss's law , which states that

, where the integral on left hand side(LHS), is evaluated over any closed surface (called Gausian Surface) , and it gives electric flux over that surface,and is the net electric charge enclosed by the chosen Gausian surface and is the permittivity of free space( since there is no dielctric anywhere in the regions under consideration).

Note : E.ds above is dot product of vector E and area element vector ds = = Eds , for , ( since in this case E vector and area vector are parallel)

So in case (a) and (d) obviously Electic field flux = 0 since q ,enclosed by gausian surfaces (spherical) imagined at these radiai enclose no charges [ in (a) no charge at all and in (d), net charge =+Q+ (-Q) =0 ]

So in (a) and (d),

Flux = 0 and hence E=0 , since surface are of Gausian surface is "not equal" to 0

What about (c) ? The field inside any metal is 0 , since charge resides on the surface.

There is another way of looking at this: Since inner sphere has charge +Q a charge of -Q is induced on inner surface of outer shell. As a result the flux in any Gausian surface we draw in region r>a and r<b, that is inside the outer shell,

net charge is 0

Hence in (c) , E=0

In case of region in (b) , the charge enclosed is Q and hence ,if we take a spherical Gausian surface at radius r (  a < r < b ),

then flux =

The field is similar in value to that due to a point charge at r =0


Related Solutions

A capacitor consists of two concentric spherical shells. The outer radius of the inner shell is...
A capacitor consists of two concentric spherical shells. The outer radius of the inner shell is a = 0.1 m and the inner radius of the outer shell is b = 0.2 m. a. What is the capacitance, C, of this capacitor? b. Suppose the maximum possible electric field at the outer surface of the inner shell before the air starts to ionize E max(r=a) = 3.0*10^6 V/m . What is the maximum possible charge on the inner capacitor? c....
A small conducting spherical shell with inner radius a and outer radius b is concentric with...
A small conducting spherical shell with inner radius a and outer radius b is concentric with a larger conducting spherical shell with inner radius c and outer radius d. The inner shell has a total charge of -1q and the outer shell has a total charge of +3q. Select True or False for the following statements. 1. The total charge on the inner surface of the small shell is -4q. 2. The total charge on the outer surface of the...
A small conducting spherical shell with inner radius a and outer radius b is concentric with...
A small conducting spherical shell with inner radius a and outer radius b is concentric with a larger conducting spherical shell with inner radius c and outer radius d. The inner shell has a total charge of -2q and the outer shell has a total charge of +4q. Select True or False for the following statements. The total charge on the inner surface of the small shell is zero. True False  The total charge on the inner surface of the large...
A capacitor is formed from two concentric spherical conducting shells separated by vacuum. The inner sphere...
A capacitor is formed from two concentric spherical conducting shells separated by vacuum. The inner sphere has radius 10.0cm , and the outer sphere has radius 16.0cm . A potential difference of 150V is applied to the capacitor. 1-What is the energy density at r = 10.1cm , just outside the inner sphere? (J/m^3) 2-What is the energy density at r = 15.9cm , just inside the outer sphere?
In Figure, a solid sphere of radius a is concentric with a spherical conducting shell of...
In Figure, a solid sphere of radius a is concentric with a spherical conducting shell of inner radius b = 2.00a and outer radius c = 2.40a. The sphere has a net uniform charge q1 (> 0); the shell has a net charge q2 = -q1.What is the magnitude of the electric field at radial distances (a) r = 0, (b) r = a/2.00, (c) r = a, (d) r = 1.50a, (e) r = 2.30a, and (f)r = 3.50a?...
Consider two spherical shells with radii R1 < R2 with the inner shell having the potential...
Consider two spherical shells with radii R1 < R2 with the inner shell having the potential Φ(ϑ)=Φ1×cos^2(ϑ), ϑ being the azimuthal angle in spherical coordinates. The outer shell is metallic and uncharged (Q2 = 0). Calculate the potential Φ(r) on the entire space. Thanks a lot.
Two isolated concentric conducting spherical shells have radii R1=0.5 m and R2=1 m, uniform charges q1=+2.0...
Two isolated concentric conducting spherical shells have radii R1=0.5 m and R2=1 m, uniform charges q1=+2.0 μC and q2=+1 μC, and negligible thickness. Assume that V=0 at infinity.​ (a) What is the magnitude of the electric field at a radial distance of r=4 m? (b) What is the magnitude of the electric field at a radial distance of r=0.7 m? (c) What is the magnitude of the electric field at a radial distance of r=0.2 m? (d) What is the...
Two isolated, concentric, conducting spherical shells have radii R1 = 0.470 m and R2 = 1.00...
Two isolated, concentric, conducting spherical shells have radii R1 = 0.470 m and R2 = 1.00 m, uniform charges q1 = +1.50 μC and q2 = +2.00 μC, and negligible thicknesses. What is the magnitude of the electric field E at radial distance (a) r = 4.70 m, (b) r = 0.610 m, and (c) r = 0.220 m? With V = 0 at infinity, what is V at (d) r = 4.70 m, (e) r = 1.00 m, (f)...
Two isolated, concentric, conducting spherical shells have radii R1 = 0.450 m and R2 = 1.50...
Two isolated, concentric, conducting spherical shells have radii R1 = 0.450 m and R2 = 1.50 m, uniform charges q1 = +1.70 μC and q2 = +2.30 μC, and negligible thicknesses. What is the magnitude of the electric field E at radial distance (a) r = 3.40 m, (b) r = 0.840 m, and (c) r = 0.360 m? With V = 0 at infinity, what is V at (d) r = 3.40 m, (e) r = 1.50 m, (f)...
A conducting spherical shell with inner radius a=0.1 m and outer radius b=0.5 m has a...
A conducting spherical shell with inner radius a=0.1 m and outer radius b=0.5 m has a positive point charge Q=+5 nC located in its center. The total charge on the shell is -3Q and it is insulated from its surroundings. a. Calculate the surface charge density on the surfaces of the shell. b. Calculate the magnitude of the electric field at a radius of 0.01 m, and at a radius of 1.5 m. c. Sketch the electric field lines in...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT