In: Statistics and Probability
Acrylic bone cement is commonly used in total joint replacement to secure the artificial joint. Data on the force (measured in Newtons, N) required to break a cement bond was determined under two different temperature conditions and in two different mediums appear in the following table.
| Temperature | Medium | Data on Breaking Force | 
| 22 degrees | Dry | 100.6, 142.7, 194.8, 118.4, 176.1, 213.1 | 
| 37 degrees | Dry | 302.3, 339.3, 288.8, 306.8, 305.2, 327.5 | 
| 22 degrees | Wet | 385.3, 368.2, 322.6, 307.4, 357.9, 321.4 | 
| 37 degrees | Wet | 363.9, 376.5, 327.7, 331.9, 338.1, 394.6 | 
(a) Estimate the difference between the mean breaking force in a
dry medium at 37 degrees and the mean breaking force at the same
temperature in a wet medium using a 90% confidence interval. (Round
your answers to one decimal place.)
( ), (   )
(b) Is there sufficient evidence to conclude that the mean breaking
force in a dry medium at the higher temperature is greater than the
mean breaking force at the lower temperature by more than 100
N? Test the relevant hypotheses using a significance level
of 0.10. (Use μhigher temperature −
μlower temperature. Round your test statistic
to two decimal places. Round your degrees of freedom to the nearest
whole number. Round your p-value to three decimal
places.)
| t | = | |
| df | = | |
| P | = | 
a)
Sample #1   ---->   sample 1  
           
   
mean of sample 1,    x̅1=   311.65  
           
   
standard deviation of sample 1,   s1 =   
18.39          
       
size of sample 1,    n1=   6  
           
   
          
           
   
Sample #2   ---->   sample 2  
           
   
mean of sample 2,    x̅2=   355.45  
           
   
standard deviation of sample 2,   s2 =   
27.10          
       
size of sample 2,    n2=   6  
           
   
          
           
   
difference in sample means =    x̅1-x̅2 =   
311.6500   -   355.5   =  
-43.80  
Degree of freedom, DF=   n1+n2-2 =   
10          
   
t-critical value =    t α/2 =   
1.8125   (excel formula =t.inv(α/2,df)  
       
          
           
pooled std dev , Sp=   √([(n1 - 1)s1² + (n2 -
1)s2²]/(n1+n2-2)) =    23.1589  
           
          
           
std error , SE =    Sp*√(1/n1+1/n2) =   
13.3708          
   
margin of error, E = t*SE =    1.8125  
*   13.3708   =  
24.2340  
          
           
difference of means =    x̅1-x̅2 =   
311.6500   -   355.450  
=   -43.8000
confidence interval is       
           
   
Interval Lower Limit=   (x̅1-x̅2) - E =   
-43.8000   -   24.2340  
=   -68.0340
Interval Upper Limit=   (x̅1-x̅2) + E =   
-43.8000   +   24.2340  
=   -19.5660
CI (-68.0 , -19.6)
...................
B)
Ho :   µ1 - µ2 =   100  
           
   
Ha :   µ1-µ2 >   100  
           
   
          
           
   
Level of Significance ,    α =   
0.1          
       
          
           
   
Sample #1   ---->   sample 1  
           
   
mean of sample 1,    x̅1=   311.65  
           
   
standard deviation of sample 1,   s1 =   
18.39          
       
size of sample 1,    n1=   6  
           
   
          
           
   
Sample #2   ---->   sample 2  
           
   
mean of sample 2,    x̅2=   157.62  
           
   
standard deviation of sample 2,   s2 =   
44.30          
       
size of sample 2,    n2=   6  
           
   
          
           
   
difference in sample means =    x̅1-x̅2 =   
311.6500   -   157.6   =  
154.03  
          
           
   
pooled std dev , Sp=   √([(n1 - 1)s1² + (n2 -
1)s2²]/(n1+n2-2)) =    33.9181  
           
   
std error , SE =    Sp*√(1/n1+1/n2) =   
19.5826          
       
          
           
   
t-statistic = ((x̅1-x̅2)-µd)/SE = (  
154.0333   -   100   ) /   
19.58   =   2.76
          
           
   
Degree of freedom, DF=   n1+n2-2 =   
10          
       
p-value =        0.010 [excel
function: =T.DIST.RT(t stat,df) ]      
      
Conclusion:     p-value <α , Reject null
hypothesis          
           
.............................
Please revert back in case of any doubt.
Please upvote. Thanks in advance.