In: Statistics and Probability
The Following are prices of a random sample of 18 smart TVs sold at a particular department store with screen sizes between 46’’ and 50’’. Find the 90% confidence interval for the true mean price of a smart TV purchased at this store. Assume the prices are normally distributed.
448 498 597 599 649 699 529 749 628 950 798 369 498 669 499 599 355 469
Solution:
x | x2 |
448 | 200704 |
498 | 248004 |
597 | 356409 |
599 | 358801 |
649 | 421201 |
699 | 488601 |
529 | 279841 |
749 | 561001 |
628 | 394384 |
950 | 902500 |
798 | 636804 |
369 | 136161 |
498 | 248004 |
669 | 447561 |
499 | 249001 |
599 | 358801 |
355 | 126025 |
469 | 219961 |
∑x=10602 | ∑x2=6633764 |
Mean ˉx=∑xn
=448+498+597+599+649+699+529+749+628+950+798+369+498+669+499+599+355+46918
=1060218
=589
Sample Standard deviation S=√∑x2-(∑x)2nn-1
=√6633764-(10602)21817
=√6633764-624457817
=√38918617
=√22893.2941
=151.305
Degrees of freedom = df = n - 1 = 18 - 1 = 17
At 90% confidence level the z is ,
= 1 - 90% = 1 - 0.90 = 0.10
/ 2 = 0.10 / 2 = 0.05
t /2,df = t0.05,17 =1.740
Margin of error = E = t/2,df * (s /n)
= 1.740 * (151.30 / 18)
= 62.04
Margin of error = 62.04
The 90% confidence interval estimate of the population mean is,
- E < < + E
589 - 62.04< < 589 + 62.04
526.96 < < 651.04
(526.96, 651.04 )