Question

In: Statistics and Probability

y x1 x2 x3 College Ranking Annual Cost Admission Rate 4Yrs Grad. 98 $37,330 84 66...

y x1 x2 x3
College Ranking Annual Cost Admission Rate 4Yrs Grad.
98 $37,330 84 66
143 $44,570 82 70
153 $54,464 85 72
193 $35,074 29 41
198 $33,160 89 45
201 $46,852 76 63
208 $24,053 82 42
224 $48,068 76 64
229 $40,788 78 62
256 $54,148 85 65
258 $34,745 82 54
261 $25,309 86 34
269 $29,328 81 40
279 $35,934 85 38
286 $49,060 83 61
293 $40,730 97 49
299 $31,908 22 20
302 $32,310 77 26
303 $37,322 78 47
304 $38,654 81 44
305 $27,152 86 36
310 $43,355 76 54
314 $49,608 84 52
319 $47,630 79 61
334 $47,090 92 59
339 $40,958 78 54
340 $43,868 83 50
355 $42,896 77 45
356 $27,445 83 36
357 $49,587 76

52

1. Run Multiple Regression for X1X2X3 Write regression equation and coefficient of determination.Explain equation and r squared.

2. Write equation and coefficient of determination, then select 3 sets of numbers and predict the values of Y. (Remember the range.)

3. Calculate +-1, +-2, and +-3 standard deviations from the mean (Use Descriptive Statistics.), Identify outliers and discuss F significance

Solutions

Expert Solution

We will be applying the Linear regression model here, it can be done by using the function LINEST(y_value, x_value, TRUE, TRUE) where y_values contain values of y here and x_values have x1, x2, x3 values.

Select 5 rows and 4 columns and then write the formula in the first cell and after that, press Shift + Ctrl + Enter.    

The equation comes out to be-

y = 180.1385 + 0.007*x1 + 1.72*x2 - 6.55*x3  

Coefficient of determination(R**2) comes out to be 0.5465, which means change in y can be 54.65% explained by x1, x2 and x3.

Taken 3 values of x1, x2, and x3 and predicted y here -

x1 x2 x3 y(predicted) y
24053 82 42 216.804649 208
48068 76 64 233.01582 224
40788 78 62 197.818698 229

y predicted was calculated like this -

y(predicted) = 180.1385+(0.007107*L6)+(1.718549*M6)-(6.55237*N6)  

mean 269.5333
S.D 67.31743
mean + S.D 336.8508
mean - S.D 202.2159
mean + 2*S.D 404.1682
mean - 2*S.D 134.8985
mean + 3*S.D 471.4856
mean - 3*S.D 67.58103


Related Solutions

Does the input requirement set V (y) = {(x1, x2, x3) | x1 + min {x2,...
Does the input requirement set V (y) = {(x1, x2, x3) | x1 + min {x2, x3} ≥ 3y, xi ≥ 0 ∀ i = 1, 2, 3} corresponds to a regular (closed and non-empty) input requirement set? Does the technology satisfies free disposal? Is the technology convex?
(1) z=ln(x^2+y^2), y=e^x. find ∂z/∂x and dz/dx. (2) f(x1, x2, x3) = x1^2*x2+3sqrt(x3), x1 = sqrt(x3),...
(1) z=ln(x^2+y^2), y=e^x. find ∂z/∂x and dz/dx. (2) f(x1, x2, x3) = x1^2*x2+3sqrt(x3), x1 = sqrt(x3), x2 = lnx3. find ∂f/∂x3, and df/dx3.
Using Y as the dependent variable and X1, X2, X3, X4 and X5 as the explanatory...
Using Y as the dependent variable and X1, X2, X3, X4 and X5 as the explanatory variables, formulate an econometric model for data that is (i) time series data (ii) cross-sectional data and (iii) panel data – (Hint: please specify the specific model here not its general form).
income (Y in $1,000s), GPA (X1), age (X2), and the gender of the individual (X3; zero...
income (Y in $1,000s), GPA (X1), age (X2), and the gender of the individual (X3; zero representing female and one representing male) was performed on a sample of 10 people. Coefficients Standard Error Intercept 4.0928 1.4400 X1 10.0230 1.6512 X2 0.1020 0.1225 X3 -4.4811 1.4400 ANOVA DF SS MS Regression 360.59 Error 23.91 a. use Excel/XLSTAT to calculate p-value for the coefficient of X1. Is it significant? α = 0.05. Next, the T table and interpolate the p-value b. use...
Let x,y ∈ R3 such that x = (x1,x2,x3) and y = (y1,y2,y3) determine if <x,y>=...
Let x,y ∈ R3 such that x = (x1,x2,x3) and y = (y1,y2,y3) determine if <x,y>= x1y1+2x2y2+3x3y3    is an inner product
Using the data, determine whether the model using (x1, x2, x3, x4) to predict y is...
Using the data, determine whether the model using (x1, x2, x3, x4) to predict y is sufficient, or should some or all other predictors be considered? Write the full and reduced models, and then perform the test. Show your work and state your conclusion, but you do not need to specify your hypothesis statements. y 60323 61122 60171 61187 63221 63639 64989 63761 66019 67857 68169 66513 68655 69564 69331 70551 x1 83 88.5 88.2 89.5 96.2 98.1 99 100...
Selling Price (Y) Square Footage (X1 ) Bedrooms (X2 ) Age (X3 ) 84,000 1670 2...
Selling Price (Y) Square Footage (X1 ) Bedrooms (X2 ) Age (X3 ) 84,000 1670 2 30 79,000 1339 2 25 91,500 1712 3 30 120,000 1840 3 40 127,500 2300 3 18 132,500 2234 3 30 145,000 2311 3 19 164,000 2377 3 7 155,000 2736 4 10 168,000 2500 3 1 172,500 2500 4 3 174,000 2479 3 3 Determine a correlation matrix for the above variables. Indicate if any collinearity exists between or among the independent variable....
DATA 2 ID X1 X2 X3 Y A 0 2 4 9 B 1 0 8...
DATA 2 ID X1 X2 X3 Y A 0 2 4 9 B 1 0 8 10 C 0 1 0 5 D 1 1 0 1 E 0 0 8 10 CORRELATION MATRIX Y X1 X2 X3 Y 1 ? -0.304 +0.889 X1 ? 1 -0.327 0 X2 -0.304 -0.327 1 -0.598 X3 +0.889 0 -0.598 1 1. What is the sum of squares regression for the full model? (Correct answer is 58, please show me how to get...
DATA 2 ID X1 X2 X3 Y A 0 2 4 9 B 1 0 8...
DATA 2 ID X1 X2 X3 Y A 0 2 4 9 B 1 0 8 10 C 0 1 0 5 D 1 1 0 1 E 0 0 8 10 CORRELATION MATRIX Y X1 X2 X3 Y 1 ? -0.304 +0.889 X1 ? 1 -0.327 0 X2 -0.304 -0.327 1 -0.598 X3 +0.889 0 -0.598 1 Comparing the zero order model and full model 1. Did the addition of X2 and X3 significantly increase R2? (correct answer is...
Case Y X1 X2 X3 X4 X5 X6 1 43 45 92 61 39 30 51...
Case Y X1 X2 X3 X4 X5 X6 1 43 45 92 61 39 30 51 2 63 47 73 63 54 51 64 3 71 48 88 76 69 68 70 4 61 35 86 54 47 45 63 5 81 47 85 71 66 56 78 6 43 34 51 54 44 49 55 7 58 35 70 66 56 42 67 8 71 41 64 70 57 50 75 9 72 31 81 71 69 72 82...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT