Question

In: Economics

Does the input requirement set V (y) = {(x1, x2, x3) | x1 + min {x2,...

Does the input requirement set

V (y) = {(x1, x2, x3) | x1 + min {x2, x3} ≥ 3y, xi ≥ 0 ∀ i = 1, 2, 3}

corresponds to a regular (closed and non-empty) input requirement set?
Does the technology satisfies free disposal? Is the technology convex?

Solutions

Expert Solution

The graphical representation is done in the photo uploaded.The second diagram shows the isoquant of x2 and x3. Min(x2, x3) gives us L shaped isoquants as they are in fixed proportions. The first diagram shows us the relationship with x1 and x3, given the 3Y constraint.

It is clearly understandable from the diagram that it is a closed and non empty set. It is also a convex set because if we join any two points within the set, it will lie inside the set only which is at par with the definition of convex set.

The property of free disposal is actually equivalent to the monotonicity of the production function. It is because free disposal is actually a situation where a firm can get rid off excess factors of production. As a result firm's output cannot decrease because they are not being penalised due to excess inputs. Thus the property states that having more and more inputs will result in at least as much as previous output, making it equivalent to the monotonicity property.

Q= x1 + min(x2,x3) is the production function.

Either x2 is minimum or x3 is.

When x2< x3, Q= x1 + x2.

When x1 increases or x2 increases, Q increases.

Similary when x3<x2 , Q= x1 + x3.

when x1 or x3 increases, Q increases.

Thus this technology is monotonic i.e. it satsifies free disposal.


Related Solutions

Find a basis and the dimension of the subspace: V = {(x1, x2, x3, x4)| 2x1...
Find a basis and the dimension of the subspace: V = {(x1, x2, x3, x4)| 2x1 = x2 + x3, x2 − 2x4 = 0}
(1) z=ln(x^2+y^2), y=e^x. find ∂z/∂x and dz/dx. (2) f(x1, x2, x3) = x1^2*x2+3sqrt(x3), x1 = sqrt(x3),...
(1) z=ln(x^2+y^2), y=e^x. find ∂z/∂x and dz/dx. (2) f(x1, x2, x3) = x1^2*x2+3sqrt(x3), x1 = sqrt(x3), x2 = lnx3. find ∂f/∂x3, and df/dx3.
Let X1, X2, X3 be independent having N(0,1). Let Y1=(X1-X2)/√2, Y2=(X1+X2-2*X3)/√6, Y3=(X1+X2+X3)/√3. Find the joint pdf...
Let X1, X2, X3 be independent having N(0,1). Let Y1=(X1-X2)/√2, Y2=(X1+X2-2*X3)/√6, Y3=(X1+X2+X3)/√3. Find the joint pdf of Y1, Y2, Y3, and the marginal pdfs.
4.Maximize: Z = 2X1+ X2-3X3 Subject to: 2X1+ X2= 14 X1+ X2+ X3≥6 X1, X2, X3≥0...
4.Maximize: Z = 2X1+ X2-3X3 Subject to: 2X1+ X2= 14 X1+ X2+ X3≥6 X1, X2, X3≥0 Solve the problem by using the M-technique.
(a) Consider three positive integers, x1, x2, x3, which satisfy the inequality below: x1 +x2 +x3...
(a) Consider three positive integers, x1, x2, x3, which satisfy the inequality below: x1 +x2 +x3 =17. (1) Let’s assume each element in the sample space (consisting of solution vectors (x1, x2, x3) satisfying the above conditions) is equally likely to occur. For example, we have equal chances to have (x1, x2, x3) = (1, 1, 15) or (x1, x2, x3) = (1, 2, 14). What is the probability the events x1 +x2 ≤8occurs,i.e.,P(x1 +x2 ≤8|x1 +x2 +x3 =17andx1,x2,x3 ∈Z+)(Z+...
Let X1, X2, X3 be continuous random variables with joint pdf f(X1, X2, X3)= 2 if...
Let X1, X2, X3 be continuous random variables with joint pdf f(X1, X2, X3)= 2 if 1<X1<2 -1<X2<0 -X2-1<X3<0                         0 otherwise Find Cov(X2, X3)
Using Y as the dependent variable and X1, X2, X3, X4 and X5 as the explanatory...
Using Y as the dependent variable and X1, X2, X3, X4 and X5 as the explanatory variables, formulate an econometric model for data that is (i) time series data (ii) cross-sectional data and (iii) panel data – (Hint: please specify the specific model here not its general form).
Let X1,X2,X3 be i.i.d. N(0,1) random variables. Suppose Y1 = X1 + X2 + X3, Y2...
Let X1,X2,X3 be i.i.d. N(0,1) random variables. Suppose Y1 = X1 + X2 + X3, Y2 = X1 −X2, Y3 =X1 −X3. Find the joint pdf of Y = (Y1,Y2,Y3)′ using : Multivariate normal distribution properties.
income (Y in $1,000s), GPA (X1), age (X2), and the gender of the individual (X3; zero...
income (Y in $1,000s), GPA (X1), age (X2), and the gender of the individual (X3; zero representing female and one representing male) was performed on a sample of 10 people. Coefficients Standard Error Intercept 4.0928 1.4400 X1 10.0230 1.6512 X2 0.1020 0.1225 X3 -4.4811 1.4400 ANOVA DF SS MS Regression 360.59 Error 23.91 a. use Excel/XLSTAT to calculate p-value for the coefficient of X1. Is it significant? α = 0.05. Next, the T table and interpolate the p-value b. use...
Lauren’s utility function is uL(x1,x2) = min{x1, x2} and Humphrey’s utility function is uH (x1, x2)...
Lauren’s utility function is uL(x1,x2) = min{x1, x2} and Humphrey’s utility function is uH (x1, x2) = ?(x1) + ?(x2). Their endowments are eL = (4,8) and eH = (2,0). a) Suppose Humphrey and Lauren are to simply just consume their given endowments. State the definition of Pareto efficiency. Is this a Pareto efficient allocation? As part of answering this question, can you find an alternative allocation of the goods that Pareto dominates the allocation where Humphrey and Lauren consume...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT