Question

In: Economics

Consider a firm that has some transformation function F(y) for L commodities, and the optimal netput...

Consider a firm that has some transformation function F(y) for L commodities, and the optimal netput y(p) resulting from profit maximization. Claim: y(p) is homogeneous of degree 0 in prices. Prove this claim

Solutions

Expert Solution

Markets have two sides: consumers and producers. The basic unit of activity on the production side of the market is the firm. The task of the firm is take commodities and turn them into other commodities. The objective of the firm is to maximize profits. That is, the firm chooses the production plan from among all feasible plans that maximizes the profit earned on that plan.

In the neoclassical (competitive) production model, the firm is assumed to be one firm among many others. Because of this (as in the consumer model), prices are exogenous in the neoclassical production model. Firms are unable to affect the prices of either their inputs or their outputs. Situations where the firm is able to affect the price of its output will be studied later under the headings of monopoly and oligopoly.

Consider an economy with L commodities. The task of the firm is to change inputs into outputs. For example, if there are three commodities, and the firm uses 2 units of commodity one and 3 units of commodity two to produce 7 units of commodity three, we can write this production plan as y = (−2, −3, 7), where, by convention, negative components mean that that commodity is an input and positive components mean that that commodity is an output. If the prices of the three commodities are p = (1, 2, 2), then a firm that chooses this production plan earns profit of π = p · y = (1, 2, 2) · (−2, −3, 7) = 6.

Usually, we will let y = (y1, ..., yL) stand for a single production plan, and Y ⊂ RL stand for the set of all feasible production plans. The shape of Y is going to be driven by the way in which different inputs can be substituted for each other in the production process.

The transformation function is such that:

F (y)=0 if y is on the frontier < 0 if y is in the interior of Y > 0 if y is outside of Y . Thus the transformation function implicitly defines the frontier of Y . Thus if F (y) < 0, y represents some sort of waste, although F () tells us neither the form of the waste nor the magnitude. The transformation function can be used to investigate how various inputs can be substituted for each other in the production process.


Related Solutions

Consider the firm with production function given by q = f ( L , K )...
Consider the firm with production function given by q = f ( L , K ) = L ^(1/4) K^(1/4). If w = r = 4, what is the change in the producer surplus when the price increases from $16 to $32? (round your answer to one decimal place if necessary)
. Consider a firm that has a production function y = f(x1, x2) = 2x 1/4...
. Consider a firm that has a production function y = f(x1, x2) = 2x 1/4 1 x 1/4 2 facing input prices w1 = 2 and w2 = 4. Assume that the output price p = 8. • What will be the profit maximizing output level? -What will be the profit? • -If this firm is divided up into two equal-size smaller firms, what would happen to its overall profits? Why
Consider the economy described by the production function Y = F (K, L x E) =...
Consider the economy described by the production function Y = F (K, L x E) = Kα(LE)1-α (a) Derive per effective worker production function. (b) Assume there is population growth rate, depreciation rate and technology growth rate. -Write the law of motion of k. -Tell how k* will be changed when population growth rate increases with graph. (c) Calculate steady state equilibrium. k∗ = y∗ = c∗ = (d) Calculate gold rule capital stock and output. kgold = ygold =...
Consider a firm with the additive production function we discussed in class: f(K, L) = 2√...
Consider a firm with the additive production function we discussed in class: f(K, L) = 2√ L + 2√ K. (a) Derive the firm’s long run demand curve for labor, as well as the firm’s long run demand curve for capital. (b) Notice that the firm’s long run labor and capital demand curves do not exhibit any substitution effects. That is, if the price of labor increases, the firm’s use of capital does not change. Why do you think this...
3. • Consider an economy described by the production function: Y 5 F(K, L) 5 K0.4L0.6....
3. • Consider an economy described by the production function: Y 5 F(K, L) 5 K0.4L0.6. a. What is the per-worker production function? b. Assuming no population growth or technological progress, find the steady-state capital stock per worker, output per worker, and consumption per worker as a function of the saving rate and the depreciation rate. c. Assume that the depreciation rate is 15 percent per year. Make a table showing steadystate capital per worker, output per worker, and consumption...
Solow Growth Model Question: Consider an economy where output (Y) is produced according to function Y=F(K,L)....
Solow Growth Model Question: Consider an economy where output (Y) is produced according to function Y=F(K,L). L is number of workers and Y is the capital stock. Production function F(K,L) has constant returns to scale and diminishing marginal returns to capital and labor individually. Economy works under assumption that technology is constant over time. The economy is in the steady-state capital per worker. Draw graph. In two year time there is a natural disaster which destroys part of economies capital...
A firm that produces shirts has a production function q=f(K,L)=K*L/10, that has a cost price of...
A firm that produces shirts has a production function q=f(K,L)=K*L/10, that has a cost price of labor= $10 and cost price of capital=$100. a) Find the isoquant if q=1 when q=2 and when q=3. Draw the graph. b) Does this firm’s production exhibit increasing, decreasing or constant returns to scale? c) Find the labor demand and the capital demand, as a function of q. d) Find the firm’s long-run cost function TC(q). e) If the firm wanted to produce 1...
Problem 2 Consider an economy described by the production function: Y = F(K,L) = K 1/2...
Problem 2 Consider an economy described by the production function: Y = F(K,L) = K 1/2 L 1/2 a. What is the per- worker production function? b. Assuming no population growth or technological progress, find the steady- state capital stock per worker, output per worker, and consumption per worker as a function of the saving rate and the depreciation rate. c. Assume that the depreciation rate is 10 percent per year. Make a table showing steady-state capital per worker, output...
Consider an economy described by the aggregate production function Y=f(K,L)=KEL^(1/2) Where Y is the total output,...
Consider an economy described by the aggregate production function Y=f(K,L)=KEL^(1/2) Where Y is the total output, K is the total capital stock, E is the efficiency of labour, and L is the total labour force. Assume this economy has a population growth of 5%, a technological growth rate of 10%, and a depreciation rate of 20%. Use the Solow model with population growth and labour-augmenting technological progress to answer the following questions: Assume this economy has a population growth of...
Consider an economy described by the aggregate production function Y=f(K,L)=(KEL)^(1/2) Where Y is the total output,...
Consider an economy described by the aggregate production function Y=f(K,L)=(KEL)^(1/2) Where Y is the total output, K is the total capital stock, E is the efficiency of labour, and L is the total labour force. Assume this economy has a population growth of 5%, a technological growth rate of 10%, and a depreciation rate of 20%. Use the Solow model with population growth and labour-augmenting technological progress to answer the following questions: Assume this economy has a population growth of...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT