Question

In: Economics

. Consider a firm that has a production function y = f(x1, x2) = 2x 1/4...

. Consider a firm that has a production function y = f(x1, x2) = 2x 1/4 1 x 1/4 2 facing input prices w1 = 2 and w2 = 4. Assume that the output price p = 8.

• What will be the profit maximizing output level?
-What will be the profit? •
-If this firm is divided up into two equal-size smaller firms, what would happen to its overall profits? Why

Solutions

Expert Solution

maxmizing profit by equating first derivative with respect to output to 0

Part (1) Profits are maxmized at output of 3 (approximately)

Part (2)

Part (3)

we have to find how profits will be impacted when firm is divided in 2 equal smaller sized firms

for this we check whether the production function exhibhits increasing returns to scale or decreasing returns to scale

since doubling the quantity of inputs (doubled its scale of operation) does not leads to doubing of ouptut and leads to an output level less than that

We can say the above production function exhibhits decreasing returns to scale

Therefore, when firm is divided in 2 equal sized firms. the 2 smaller firms would operate at half the scale of operation of the bigger firms

Given fixed prices, total revenue will be more than half of the original revenue. Given fixed prices, cutting its scale of operation by half will cut total cost by half and hence, the overall profit will increase.

This can be shown by checking how the level of output changes when quantity of inputs (scale of operation ) is reduced by half

therefore halving the quantity of inputs does not lead to an output level half the original output level


Related Solutions

The production function of a competitive firm is given by f(x1, x2) = x1^1/3 (x2 −...
The production function of a competitive firm is given by f(x1, x2) = x1^1/3 (x2 − 1)^1/3 The prices of inputs are w1 = w2 = 1. (a) Compute the firm’s cost function c(y). (b) Compute the marginal and the average cost functions of the firm. (c) Compute the firm’s supply S(p). What is the smallest price at which the firm will produce? 2 (d) Suppose that in the short run, factor 2 is fixed at ¯x2 = 28. Compute...
Suppose that a firm has the p production function f(x1; x2) = sqrt(x1) + x2^2. (a)...
Suppose that a firm has the p production function f(x1; x2) = sqrt(x1) + x2^2. (a) The marginal product of factor 1 (increases, decreases, stays constant) ------------ as the amount of factor 1 increases. The marginal product of factor 2 (increases, decreases, stays constant) ----------- as the amount of factor 2 increases. (b) This production function does not satisfy the definition of increasing returns to scale, constant returns to scale, or decreasing returns to scale. How can this be? (c)Find...
A firm has two variable factors and a production function f(x1; x2) = (2x1 + 4x2)^1/2....
A firm has two variable factors and a production function f(x1; x2) = (2x1 + 4x2)^1/2. On a graph, plot three input combinations and draw production isoquants corresponding to an output of 3 and to an output of 4. Also, mention the technical rate of substitution(s) for the isoquants. Show all working.
Consider a perfectly competitive firm that produces output using a wellbehaved production function y = f(x1,x2)....
Consider a perfectly competitive firm that produces output using a wellbehaved production function y = f(x1,x2). Let the price of output be denoted by p, the price of input 1 be denoted by w1, and the price of input 2 be denoted by w2. (a) State the firm’s cost-minimization problem, and draw the solution to the cost minimization problem on a graph. (b) What are the solutions to the cost-minimization problem? What are these solutions called? Which variables are these...
Consider a perfectly competitive firm that produces output using a wellbehaved production function y = f(x1,x2)....
Consider a perfectly competitive firm that produces output using a wellbehaved production function y = f(x1,x2). Let the price of output be denoted by p, the price of input 1 be denoted by w1, and the price of input 2 be denoted by w2. j)  Suppose x2 is fixed at some level x2. Graph the solution to the profit maximization problem where profit is maximized by choosing x1. [Note that this profit maximization problem is the short-run version of the profit...
An industry has 1000 firms, each with the production function f(x1; x2 ) x1^.5 x2^.5. Theprice...
An industry has 1000 firms, each with the production function f(x1; x2 ) x1^.5 x2^.5. Theprice of factor 1 is 1 and the price of factor 2 is 1. In the long run, both factors are variable, but inthe short run, each firm is stuck with using 100 units of factor 2.The long run industry supply curve:Can somebody explain how to solve?
Consider the function f(x, y) = 4xy − 2x 4 − y 2 . (a) Find...
Consider the function f(x, y) = 4xy − 2x 4 − y 2 . (a) Find the critical points of f. (b) Use the second partials test to classify the critical points. (c) Show that f does not have a global minimum.
A firm’s production function be given by y = x1 + x2 with w1 and w2...
A firm’s production function be given by y = x1 + x2 with w1 and w2 being the price of inputs 1 and 2 respectively. (a) Derive the conditional factor demands. (b) Suppose w1 = 2 and w2 = 1. Find the long-run cost function for this firm. Derive and graph the firm’s long-run supply curve. (c) Suppose the price of x2, w2, increases to $2 per unit. What is the long-run cost curve? Derive and graph the new supply...
Linda sells an android app. Her firm’s production function is f (x1, x2) = x1 +...
Linda sells an android app. Her firm’s production function is f (x1, x2) = x1 + 2x2 where x1 is the amount of unskilled labor and x2 is the amount of skilled labor that she employs. Draw the isoquant at 20 units of output and another at 40 units of output. Does this production function exhibit increasing, decreasing, or constant return to scale? If Linda faces factor prices (w1, w2) = (1, 1), what is the cheapest way to produce...
The production function is f(x1, x2) = x11/2 x21/2 . If the price of factor 1...
The production function is f(x1, x2) = x11/2 x21/2 . If the price of factor 1 is $12 and the price of factor 2 is $24, in what proportions should the firm use factors 1 and 2 if it wants to maximize profits?(a) x1 = x2 (b) x1 = 0.50x2 (c) x1 = 2x2 (d) x1 = 24x2 (e) We can't tell without knowing the price of output.  
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT