Question

In: Advanced Math

Please show picture over a rectangle. a) Let f(x,y) = 2sin(πx)−3cos(πy). Calculate Uf(P) and Lf(P) over...

Please show picture over a rectangle.

a) Let f(x,y) = 2sin(πx)−3cos(πy). Calculate Uf(P) and Lf(P) over the partition P = {1,1.5,2}×{2,2.5,3}.

b) Explain what techniques would be necessary to calculate Uf(P) and Lf(P) for f(x,y) = 2sin(x)−3cos(y) over the partition P = {1,1.5,3}×{2,2.5,3}.

Solutions

Expert Solution


Related Solutions

Let f: X-->Y and g: Y-->Z be arbitrary maps of sets (a) Show that if f...
Let f: X-->Y and g: Y-->Z be arbitrary maps of sets (a) Show that if f and g are injective then so is the composition g o f (b) Show that if f and g are surjective then so is the composition g o f (c) Show that if f and g are bijective then so is the composition g o f and (g o f)^-1 = g ^ -1 o f ^ -1 (d) Show that f: X-->Y is...
The value of f depends on two independent variables x and y as defined below: f(x,y)=x2+y2−x+3cos(x)sin(y)...
The value of f depends on two independent variables x and y as defined below: f(x,y)=x2+y2−x+3cos(x)sin(y) Function f has a minimum in the neighborhood of the origin (i.e. [0 0]). Find x and y which minimize f. Note: You are not allowed to use MATLAB built-in functions for optimization. Follow the logic of the derivative test: The minimum of f occurs where: ∂f∂x=0∂f∂y=0
The curried version of let f (x,y,z) = (x,(y,z)) is let f (x,(y,z)) = (x,(y,z)) Just...
The curried version of let f (x,y,z) = (x,(y,z)) is let f (x,(y,z)) = (x,(y,z)) Just f (because f is already curried) let f x y z = (x,(y,z)) let f x y z = x (y z)
let p ( x , y )be a joint pmf of Xand Y. p ( x...
let p ( x , y )be a joint pmf of Xand Y. p ( x , y ) y = 0 y = 1 y = 2 x = 0 .12 .10 .08 x = 1 .13 .17 .10 x = 2 .15 .15 0 (a) Find the marginal pmf's of Xand Y. (b) Determine whether Xand Yare independent. c) Find Correlation (X,Y)
Let f(x) = sin(πx). • x0 = 1,x1 = 1.25, and x2 = 1.6 are given....
Let f(x) = sin(πx). • x0 = 1,x1 = 1.25, and x2 = 1.6 are given. Construct Newton’s DividedDifference polynomial of degree at most two. • x0 = 1,x1 = 1.25,x2 = 1.6 and x3 = 2 are given. Construct Newton’s Divided-Difference polynomial of degree at most three.
5. Let X, Y and Z be sets. Let f : X ! Y and g...
5. Let X, Y and Z be sets. Let f : X ! Y and g : Y ! Z functions. (a) (3 Pts.) Show that if g f is an injective function, then f is an injective function. (b) (2 Pts.) Find examples of sets X, Y and Z and functions f : X ! Y and g : Y ! Z such that g f is injective but g is not injective. (c) (3 Pts.) Show that if...
Find the least squares approximation of  f (x)  =  7 + 3 cos(πx)  over the interval...
Find the least squares approximation of  f (x)  =  7 + 3 cos(πx)  over the interval [−1, 1] by a polynomial of the form p(x)  =  c0 + c1x + c2x2. (a) Enter the polynomial p(x) into the answer box below. (b) Find the mean square error of the approximation.
Calculate the all of the second order derivatives of f(x,y)=x^4 y- 〖3x〗^4 y^3+5y-10 Let be f(x,y,x)=2x^5...
Calculate the all of the second order derivatives of f(x,y)=x^4 y- 〖3x〗^4 y^3+5y-10 Let be f(x,y,x)=2x^5 yz^3-3x^(-4) y^3 calculate the f_xyz=? If f(x,y,z)〖=5e〗^(-xyz^6 ) +lnx calculate the f_yxz=? Let f(x,y)=cos(x^3 y) ise df/dx=? df/dy=? z=2x+y , x=sin(3t ) and y=cos(3t) using the chain rule calculate the dz/dt where t=π/2. Find the critical points of the f(x,y)=〖6x〗^2+12y^2+12x-24y and provide the information about the critical points obtained (if it is max, min or saddle point).
Let T∈ L(V), and let p ∈ P(F) be a polynomial. Show that if p(λ) is...
Let T∈ L(V), and let p ∈ P(F) be a polynomial. Show that if p(λ) is an eigenvalue of p(T), then λ is an eigenvalue of T. Under the additional assumption that V is a complex vector space, and conclude that {μ | λ an eigenvalue of p(T)} = {p(λ) | λan eigenvalue of T}.
Let f(x, y) = − cos(x + y2 ) and let a be the point a...
Let f(x, y) = − cos(x + y2 ) and let a be the point a = ( π/2, 0). (a) Find the direction in which f increases most quickly at the point a. (b) Find the directional derivative Duf(a) of f at a in the direction u = (−5/13 , 12/13) . (c) Use Taylor’s formula to calculate a quadratic approximation to f at a.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT