In: Statistics and Probability
For the following probability mass function, p(x)=1/x for x=2, 4, 8 p(x) = k/x2 for x=16 Find the value of k. Find the standard deviation of (7-9X).
1) for this to be valid:
P(x) must be equal to 1
therefore P(x) =P(2)+P(4)+P(8)+P(16)=(1/2)+(1/4)+(1/8)+k/256 =1
k/256 =1/8
k=32
2)
x | P(x) | xP(x) | x2P(x) |
2 | 1/2 | 1.0000 | 2.0000 |
4 | 1/4 | 1.0000 | 4.0000 |
8 | 1/8 | 1.0000 | 8.0000 |
16 | 1/8 | 2.0000 | 32.0000 |
total | 5.0000 | 46.0000 | |
E(x) =μ= | ΣxP(x) = | 5.0000 | |
E(x2) = | Σx2P(x) = | 46.0000 | |
Var(x)=σ2 = | E(x2)-(E(x))2= | 21.0000 | |
std deviation= | σ= √σ2 = | 4.5826 |
hence standard deviation of 7-9X =9*SD(X) =9*4.5826 =41.2432