Question

In: Economics

A firm has the following long run production function x = a(K^1/2)(L^1/2)(P^1/4), where a > 0...

A firm has the following long run production function x = a(K^1/2)(L^1/2)(P^1/4), where a > 0 is a constant and K, L , P are inputs of the three factors. The prices of K, L , P are Rs. 1 , Rs. 9 and Rs. 8 respectively.

a) Derive the firm’s long run total cost function , long run average cost function and long run marginal cost function. Show the workings in detail

b) In the short run P is fixed and K and L are variable. Derive the firms short run a) Total Cost Function b) Variable Cost Function c) Average Variable Cost Function d) Marginal Cost Function.

c) Obtain an equation of the form P = f(x) showing the optimum quantity of the fixed factor P for the firm to acquire as a function of the intended output x.

Solutions

Expert Solution


Related Solutions

Consider the following production function: x = f(l,k) = lb kb where x is the output,...
Consider the following production function: x = f(l,k) = lb kb where x is the output, l is the labour input, k is the capital input, and b is a positive constant. Suppose b < 1/2. (a) Set up the cost minimization problem and solve for the conditional labour and conditional capital demand functions. Let w and r be the wage rate and rental cost of capital respectively. (b) Using your answer in (a), derive the cost function and simplify...
A random variable X has a distribution p(X=k) = A / (k(k+1)), k = 1,2,...,4, where...
A random variable X has a distribution p(X=k) = A / (k(k+1)), k = 1,2,...,4, where A is an constant. Then compute the value of p(1<=X<=3) The answer will be either: 2/3, 3/4, 5/6, or 15/16 A discrete random variable X is uniformly distributed among −1,0,...,12. Then, what is its PMF for k=−1,0,...,12 The answer will be either: p(X = k) = 1/12, 1/13, 1/14, or 1
Joe’s coffee house operates under the production function Q(L,K) = ln(L^2 ) + K^1/2 , where...
Joe’s coffee house operates under the production function Q(L,K) = ln(L^2 ) + K^1/2 , where L is the number of worker hours and K is the number of coffee machine hours. What happens to the marginal rate of technical substitution as Joe substitutes labor for capital, holding output constant? What does this imply about the shape of the corresponding isoquants? Justify. What happens to the marginal product of labor as Joe uses more labor, holding capital constant? What does...
Suppose a production function is given by  F ( K , L ) = K^(1/2) L^(1/2), the...
Suppose a production function is given by  F ( K , L ) = K^(1/2) L^(1/2), the price of capital “r” is $16, and the price of labor “w” is $16. a. (5) What combination of labor and capital minimizes the cost of producing 100 units of output in the long run? b. (5) When r falls to $1, what is the minimum cost of producing 100 pounds of pretzels in the short run? In the long run? c. (5) When...
Consider production function Q= L^3 * K^4 - L^2 (a) Determine the MRTS L,K for this...
Consider production function Q= L^3 * K^4 - L^2 (a) Determine the MRTS L,K for this production function (b) Does this production function have an uneconomic region? If so, describe the region algebraically. (Hint: your answer will be an inequality like this: K<5L)
For the following probability mass function, p(x)=1/x for x=2, 4, 8 p(x) = k/x2 for x=16...
For the following probability mass function, p(x)=1/x for x=2, 4, 8 p(x) = k/x2 for x=16 Find the value of k. Find the standard deviation of (7-9X).
4. A firm has the following production function:y = L 1/3 K 1/2 . 2 (a)...
4. A firm has the following production function:y = L 1/3 K 1/2 . 2 (a) Does this production function exhibit increasing, decreasing, or constant returns to scale? Prove. (b) Suppose in the short run, capital is fixed at K = 100. Assuming that the output and factor prices are p, w, and r respectively, find firm’s factor demand for labor. What will the effects be when w, r, and p increase? Explain your results intuitively. (c) Now, suppose the...
A plant’s production function is Q = L^1/3 K^2/3, where L is hours of labor and...
A plant’s production function is Q = L^1/3 K^2/3, where L is hours of labor and K is hours of capital. The price of labor services, w, is $40 per hour and of capital services, r, is $10 per hour. a. Derive the long-run expansion path. In words describe what the expansion path represents. b. In the short-run, the plant’s capital is fixed at K = 64. Labor, on the other hand, is variable. How much will it cost to...
assume a firm has the production function q=k^1/4L^1/4, where k represents capital, L represents labor, r...
assume a firm has the production function q=k^1/4L^1/4, where k represents capital, L represents labor, r represents the price of capital and w represents the price of labor.   Using the Lagrange method, derive the optimal quantities of k and l as a function of q,r,w
Suppose a production function is given by  F ( K , L ) = K 1 2...
Suppose a production function is given by  F ( K , L ) = K 1 2 L 1 2, the price of capital “r” is $16, and the price of labor “w” is $16. a. (5) What combination of labor and capital minimizes the cost of producing 100 units of output in the long run? b. (5) When r falls to $1, what is the minimum cost of producing 100 pounds of pretzels in the short run? In the long...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT