Question

In: Chemistry

All of the reactions shown are oxidationreduction reactions except A) N2(g) + O2 (g) → 2...

All of the reactions shown are oxidationreduction reactions except

A) N2(g) + O2 (g) → 2 NO(g)

B) 2 Fe2O3 (s) → 4 Fe(s) + 3 O2 (g)

C) Zn(s) + 2 HCl(aq) → ZnCl2 (aq) + H2 (g)

D) CH4(g) + 2 O2 (g) → CO2(g) + 2 H2O(l)

E) K2SO4(aq) + BaCl2(aq) → BaSO4(s) + 2 KCl(aq)

Solutions

Expert Solution


Related Solutions

PART A.Identify the proper form of the equilibrium-constant expression for the equation N2(g)+O2(g)⇌2NO(g) 1.K=[NO][N2][O2] 2.K=[NO]2[N2][O2] 3.K=[N2][O2][NO]2...
PART A.Identify the proper form of the equilibrium-constant expression for the equation N2(g)+O2(g)⇌2NO(g) 1.K=[NO][N2][O2] 2.K=[NO]2[N2][O2] 3.K=[N2][O2][NO]2 4.K=2[NO][N2][O2] PART B. The equilibrium-constant of the reaction NO2(g)+NO3(g)⇌N2O5(g) is K=2.1×10−20. What can be said about this reaction? 1.At equilibrium the concentration of products and reactants is about the same. 2.At equilibrium the concentration of products is much greater than the concentration of reactants. 3.At equilibrium the concentration of reactants is much greater than that of products. 4.There are no reactants left over once...
The following reaction N2 (g) + O2 (g) ⇔ 2 NO (g) has a KP =...
The following reaction N2 (g) + O2 (g) ⇔ 2 NO (g) has a KP = 0.032 at a particular temperature. At that temperature, a vessel is filled with 0.040 atm of N2 (g), 0.040 atm of O2 (g) and 0.043 atm of NO (g). What is the pressure of NO (g) at equilibrium?
Given the data N2(g) + O2(g) → 2 NO(g) ΔH = +180.7 kJ 2 NO(g) +...
Given the data N2(g) + O2(g) → 2 NO(g) ΔH = +180.7 kJ 2 NO(g) + O2(g) → 2 NO2(g) ΔH = −113.1 kJ 2 N2O(g) → 2 N2(g) + O2(g) ΔH = −163.2 kJ use Hess's law to calculate ΔH for the reaction N2O(g) + NO2(g) → 3 NO(g).
Consider the following reaction at 173 K: 2 N2O (g) → 2 N2 (g) + O2...
Consider the following reaction at 173 K: 2 N2O (g) → 2 N2 (g) + O2 (g) In one of your laboratory experiments, you determine the equilibrium constant for this process, at 173 K, is 6.678E+57. You are given a table of data that indicates the standard heat of formation (ΔHoform) of N2O is 82.0 kJ/mol. Based on this information, what is the standard entropy change (ΔSorxn) for this reaction at 173 K? ΔSorxn(J/K)=
Consider the first order reaction 2 N2O(g) ⟶ 2 N2 (g) + O2(g). What will [N2O]...
Consider the first order reaction 2 N2O(g) ⟶ 2 N2 (g) + O2(g). What will [N2O] be after 3 half lives when 0.25 moles N2O is placed in a 1.00-L reaction vessel?
For the reaction: N2(g) + 2 O2(g) ↔ 2 NO2(g), Kc = 8.3 × 10-10 at...
For the reaction: N2(g) + 2 O2(g) ↔ 2 NO2(g), Kc = 8.3 × 10-10 at 25°C. What is the concentration of N2 gas at equilibrium when the concentration of NO2 is twice the concentration of O2 gas?
Consider the equilibrium N2(g) + O2(g) ⇄ 2 NO(g) At 2300 K the equilibrium constant K...
Consider the equilibrium N2(g) + O2(g) ⇄ 2 NO(g) At 2300 K the equilibrium constant K = 1.7 × 10-3. Suppose that 0.0150 mol NO(g), 0.250 mol N2(g), and 0.250 mol O2(g) are placed into a 10.0-L flask and heated to 2300 K. The system is not at equilibrium. Determine the direction the reaction must proceed to reach equilibrium and the final equilibrium concentrations of each species. to the right to the left [N2] =____ mol/L [O2] = ____mol/L [NO]...
Nitrogen gas reacts with oxygen gas to form dinitrogen tetroxide. N2 (g) + 2 O2 (g)...
Nitrogen gas reacts with oxygen gas to form dinitrogen tetroxide. N2 (g) + 2 O2 (g) →  N2O4 (g) A 1.8 L reaction vessel, initially at 298 K, contains nitrogen gas at a partial pressure of 337 mmHg and oxygen gas at a partial pressure of 445 mmHg . What is the pressure of N2O4 in the reaction vessel after the reaction? Enter your answer numerically, in terms of mmHg. Please show all work
At 3748°C, K = 0.093 for the following reaction. N2(g) + O2(g) equilibrium reaction arrow 2...
At 3748°C, K = 0.093 for the following reaction. N2(g) + O2(g) equilibrium reaction arrow 2 NO(g) Calculate the concentrations of all species at equilibrium for each of the following cases. (a) 1.6 g N2 and 3.0 g O2 are mixed in a 1.3-L flask. (b) 2.0 mol pure NO is placed in a 2.1-L flask.
Calculate the collision frequency for the N2 – N2 collisions, N2 – O2 collisions and O2...
Calculate the collision frequency for the N2 – N2 collisions, N2 – O2 collisions and O2 – O2 collisions in air at 298 k and 0.95 bar pressure. Assume air is 80 % N2 and 20% O2 by mass and that σ = 0.43 nm2 for both molecules.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT