In: Statistics and Probability
A liquor wholesaler is interested in assessing the effect of the price of a premium scotch whiskey on the quantity sold. The results in the accompanying table on price, in dollars, and sales, in cases, were obtained from a sample of 8 weeks of sales records.
Price 19.3 20.6 19.8 21.3 20.8 19.7 17.9 17.4
Sales 25.2 15.1 18.9 11.8 10.7 16.1 29.6 35.4
Yi=___+___xi
X | Y | X * Y | X2 | Ŷ | (Y - Ŷ)2 | Sxx =Σ (Xi - X̅ )2 | Syy = Σ( Yi - Y̅ )2 | Sxy = Σ (Xi - X̅ ) * (Yi - Y̅) | |
19.3 | 25.2 | 486.36 | 372.49 | 22.2220 | 8.9 | 0.0900 | 23.5225 | -1.4550 | |
20.6 | 15.1 | 311.06 | 424.36 | 14.1098 | 1.0 | 1.0000 | 27.5625 | -5.2500 | |
19.8 | 18.9 | 374.22 | 392.04 | 19.1020 | 0.0 | 0.0400 | 2.1025 | -0.2900 | |
21.3 | 11.8 | 251.34 | 453.69 | 9.7417 | 4.2 | 2.8900 | 73.1025 | -14.5350 | |
20.8 | 10.7 | 222.56 | 432.64 | 12.8618 | 4.7 | 1.4400 | 93.1225 | -11.5800 | |
19.7 | 16.1 | 317.17 | 388.09 | 19.7260 | 13.1 | 0.0100 | 18.0625 | -0.4250 | |
17.9 | 29.6 | 529.84 | 320.41 | 30.9583 | 1.8449 | 2.8900 | 85.5625 | -15.7250 | |
17.4 | 35.4 | 615.96 | 302.76 | 34.0783 | 1.7468 | 4.8400 | 226.5025 | -33.1100 | |
Total | 156.8 | 162.8 | 3108.51 | 3086.48 | 15991.8998 | 35.5387 | 13.2000 | 549.5400 | -82.3700 |
X̅ = Σ (Xi / n ) = 156.8/8 = 19.6
Y̅ = Σ (Yi / n ) = 162.8/8 = 20.35
Estimated Error Variance (σ̂2) =
S2 = ( 549.54 - -6.2402 * -82.37 ) / 8 - 2
S2 = 5.9225
S = 2.4336
Part a)
Equation of regression line is Ŷ = a + bX
b = ( n Σ(XY) - (ΣX* ΣY) ) / ( n Σ X2 - (ΣX)2
)
b = ( 8 * 3108.51 - 156.8 * 162.8 ) / ( 8 * 3086.48 - ( 156.8
)2)
b = -6.2402
a =( ΣY - ( b * ΣX ) ) / n
a =( 162.8 - ( -6.2402 * 156.8 ) ) / 8
a = 142.657
Equation of regression line becomes Ŷ = 142.657 + -6.2402 X
Part b)
Part c)
Unbiased Estimator of σ2 = S2 = Σ (Y - Ŷ
)2 / n - 2 = 35.5387 / 6 = 5.9231
Standard Error of Estimate S = √ ( Σ (Y - Ŷ ) / n - 2) = √(35.5387
/ 6) = 2.4337
Part d)
Confidence Interval
Critical value
= 1.943 ( From t table )
90% confidence interval is -7.5418 <
< -4.9386
Part e)
= 142.657 + -6.2402 X
= 17.853
Part f)
Confidence Interval of
Critical value
= 1.943 ( From t table )
X̅ = (Xi / n ) = 156.8/8 = 19.6
= 17.853
90% confidence interval is ( 16.102 <
< 19.604 )