Question

In: Statistics and Probability

When reviewing the regression analysis output the statistics that must be evaluated the equation to describe...

When reviewing the regression analysis output the statistics that must be evaluated the equation to describe the statistical relationship between one or more predictor variables and the response variable. The p-value for each term tests the null hypothesis that the coefficient is equal to zero (no effect). A low p-value (<0.05) indicates that you can reject the null hypothesis. An analyst that has a low p-value is likely to be a meaningful addition to your model because changes in the analyst’s value is related to changes in the response variable. A larger p-value suggests that changes in the analysis are not associated with changes in the response

PLEASE REPLY TO QUESTION: Now, is it possible that a predictor is important, but the p-value is greater than .05, when you dump all the variables in the regression model?

Solutions

Expert Solution

The p-value of a predictor can increase if we remove some other explanatory variables from the model. This is especially true when we have confounding variables. The inclusion of a confounding variable might improve the prediction capability of an existing predictor variable, which manifests in the improved p-value of an existing predictor. On the other hand, excluding the confounding variable can increase the p-value, though the original predictor is indeed important.

As an example, while studying indigestion in kids against Vitamin A supplement intake, the 2 variables are found to be positively correlated (kids who intake Vitamin A supplements are in general expected to be those who suffer with indigestion). While Vitamin A intake decreases indigestion, lack of fiber intake increases indigestion. If we now include the fiber intake into the model, the relationship between indigestion and Vitamin A intake will appear stronger. Hence, adding the new predictor actually increases the predictability or p-value of the original predictor, and removing it decrease the same, though the original predictor is indeed important.


Related Solutions

Discuss the statistics that must be evaluated when reviewing the regression analysis output. Provide examples of...
Discuss the statistics that must be evaluated when reviewing the regression analysis output. Provide examples of what the values represent and an explanation of why they are important. april 2019 150 - 200 words please, typed if possible
Discuss the statistics that must be evaluated when reviewing the regression analysis output. Provide examples of...
Discuss the statistics that must be evaluated when reviewing the regression analysis output. Provide examples of what the values represent and an explanation of why they are important.
Discuss the statistics that must be evaluated when reviewing the regression analysis output. Provide examples of...
Discuss the statistics that must be evaluated when reviewing the regression analysis output. Provide examples of what the values represent and an explanation of why they are important.
Discuss the statistics that must be evaluated when reviewing the regression analysis output. Provide examples of...
Discuss the statistics that must be evaluated when reviewing the regression analysis output. Provide examples of what the values represent and an explanation of why they are important.
Discuss the statistics that must be evaluated when reviewing the regression analysis output. Provide examples of...
Discuss the statistics that must be evaluated when reviewing the regression analysis output. Provide examples of what the values represent and an explanation of why they are important. In replies to peers, discuss whether you agree or disagree with the assessment provided by peers and explain why. using a refrence and in your own words can you answer the question. Not one that in your answers.
Discuss the statistics that must be evaluated when reviewing the regression analysis output. Provide examples of...
Discuss the statistics that must be evaluated when reviewing the regression analysis output. Provide examples of what the values represent and an explanation of why they are important.
Discuss the statistics that must be evaluated when reviewing the regression analysis output. Provide examples of...
Discuss the statistics that must be evaluated when reviewing the regression analysis output. Provide examples of what the values represent and an explanation of why they are important.
1. What would the regression output (analysis) look like using this multiple regression equation and the...
1. What would the regression output (analysis) look like using this multiple regression equation and the following data? Daily Gross Revenue= total daily income+b1*daily tour income+b2*number of tourists+b3*Friday+b4*Saturday 2. What's the multiple regression equation with the numbers from the output? Years Weekend Daily Tour Income Number of Tourists Daily Gross Revenue Total Daily Income 1 Friday 3378 432 4838.95 8216.95 1 Saturday 1198 139 3487.78 4685.78 1 Sunday 3630 467 4371.3 8001.3 2 Friday 4550 546 6486.48 11036.48 2 Saturday...
Regression equation for Case 3.0: SUMMARY OUTPUT Regression Statistics Multiple R 0.957 R Square 0.915 Adjusted...
Regression equation for Case 3.0: SUMMARY OUTPUT Regression Statistics Multiple R 0.957 R Square 0.915 Adjusted R Square 0.908 Standard Error 5.779 Observations 52 ANOVA df SS MS F Significance F Regression 4 16947.86487 4236.9662 126.8841 1.45976E-24 Residual 47 1569.442824 33.392401 Total 51 18517.30769 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept 39.08190 15.31261 2.55227 0.014012 8.27693 69.88687 X-Price -7.37039 0.98942 -7.44921 1.71E-09 -9.36084 -5.37994 Y-Price -5.42813 0.33793 -16.06289 1.03E-20 -6.10796 -4.74831 Z-Price 4.05067 0.33949 11.93173 7.95E-16...
Given the following regression analysis output.
Given the following regression analysis output. a. What is the sample size?b. How many independent variables are in the study?c. Determine the coefficient of determination.d. Conduct a global test of hypothesis. Can you conclude at least one of the independent variables does not equal zero? Use the .01 significance level.e. Conduct an individual test of hypothesis on each of the independent variables. Would you consider dropping any of the independent variables? If so, which variable or variables would you drop?...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT